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We compute the nonplanar contribution to the universal anomalous dimension of the SU(4)-singlet twist-
two operators in N ¼ 4 supersymmetric Yang-Mills theory at four loops through Lorentz spin 18. From
this, we numerically evaluate the nonplanar contribution to the four-loop lightlike cusp anomalous
dimension and derive the transcendental ζ3 and ζ5 parts of the universal anomalous dimension for arbitrary
Lorentz spin in analytic form. As for the lightlike cusp anomalous dimension and the ζ5 part of the
universal anomalous dimension, we confirm previous results.
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The AdS=CFT correspondence [1–3], also known as
holographic duality, has been one of the most active and
tantalizing research topics in high-energy theory over the
past two decades. This implies that quantum gravity in
anti–de Sitter space, with constant negative curvature, is
equivalent to a lower-dimensional nongravitational quan-
tum field theory of conformal type,N ¼ 4 supersymmetric
Yang-Mills (SYM) theory, living on the boundary of that
gravitational space. The AdS=CFT correspondence has led
to a plethora of intriguing physical insights and powerful
novel methods of calculation [4–16]. The latter allow us to
solve longstanding problems not only in supersymmetric
toy models, but also in real theories of nature, such as
quantum chromodynamics (QCD) [17–19].
So far, investigations of the AdS=CFT correspondence

have largely been confined to the planar limit, in which
Feynman diagrams of planar topologies contribute, while
nonplanar topologies are far more difficult to tackle. It is
obviously of paramount interest to go beyond the planar
limit, as this will allow us to significantly deepen and
consolidate our understanding of the AdS=CFT correspon-
dence and to access as-yet unexplored regions of it.
Quantities of key interest include the anomalous dimen-

sions of the operators, composed of the quantum fields of
N ¼ 4 SYM theory, that are of leading twist, twist two, and
are singlets under the internal symmetry group SU(4).

These operators are sorted by their Lorentz spin j, which
counts the covariant derivatives, and are multiplicatively
renormalized, sharing the same universal anomalous
dimension γuniðjÞ, which just depends on j. Nonplanar
contributions to the latter can be obtained by directly
computing, by means of advanced computerized methods,
the relevant Feynman diagrams in perturbation theory in
powers of the gauge coupling g.
The study of the renormalization of composite operators

in N ¼ 4 SYM theory has led to the discovery of the
relation of this problem with exactly solvable models [20].
The integrability in the planar limit was intensively studied
and established from both sides of the AdS=CFT corre-
spondence (see Ref. [15] for a review and Refs. [16,21] for
the recently developed quantum spectral curve approach).
In the nonplanar case, integrability-based methods have
been considered, in general, in Refs. [22,23]. Nonplanar
contributions to anomalous dimensions serve as a welcome
laboratory for stringent tests of the ideas and models thus
proposed. This provides a strong motivation for our
present work.
Once a general result for the universal anomalous

dimension is established, it is interesting to study its
analytical properties and particular limits. The most inter-
esting one, j → ∞, yields the lightlike cusp anomalous
dimension γcusp [24], which can be computed by alternative
methods, too. The planar part of γcusp has been found to all
orders a long time ago, through the asymptotic Bethe
Ansatz equation [11]. Recently, its nonplanar part has been
established through four loops, at Oðg8Þ, via the Sudakov
form factor, numerically in Refs. [25,26] and analytically in
Ref. [27], and via the lightlike polygonal Wilson loops,
again analytically, in Ref. [28]. At four loops in QCD, at
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Oðα4sÞ in the strong-coupling constant αs, the quark cusp
anomalous dimension in the planar limit has been found via
the quark form factor in Ref. [29], its contribution with
quartic fundamental color factor has been obtained, again
via the quark form factor, in Ref. [30], and the complete
quark and gluon cusp anomalous dimensions have been
established via their counterpart in N ¼ 4 SYM theory in
Ref. [28] and via the massless quark and gluon form factors
in Ref. [31].
Explicit knowledge of γuniðjÞ for general value of j

would unfold the nonplanar anatomy of the anomalous
dimensions in N ¼ 4 SYM theory. A possible avenue to
this goal is to evaluate γuniðjÞ for as many values of j as
possible and to try and extract from this the general result.
In N ¼ 4 SYM theory, nonplanarity appears for the first
time at Oðg8Þ. In Refs. [32–34], the nonplanar contribu-
tions to γuniðjÞ atOðg8Þ were analytically calculated for the
first three nontrivial values j ¼ 4, 6, 8. Recently, these
results have been confirmed and extended to j ¼ 10
applying the method of asymptotic expansions to the
four-point functions of length-two half–Bogomol’nyi-
Prasad-Sommerfield operators [35]. The purpose of this
Letter is to push this endeavor as far as possible, which
turns out to be through j ¼ 18, thanks to cutting-edge
technology and computing power. We will thus be able to
reconstruct the general coefficients of ζ3 and ζ5 and to
obtain an independent numerical result for γcusp at Oðg8Þ.
The former is new, and the latter confirm previous findings
in Ref. [32] and Refs. [25–28], respectively.
Specifically, the set of local, gauge-invariant, SU(4)-

singlet, twist-two operators of definite Lorentz spin j in
N ¼ 4 SYM theory reads

Oλ
μ1;…;μj ¼ Ŝλ̄ai γμ1Dμ2 � � �Dμjλ

a;i; ð1Þ

Og
μ1;…;μj ¼ ŜGa

ρμ1Dμ2Dμ3 � � �Dμj−1G
a;ρ
μj ; ð2Þ

Oϕ
μ1;…;μj ¼ Ŝϕ̄a

rDμ1Dμ2 � � �Dμjϕ
a;r; ð3Þ

where the spinors λi refer to the gauginos, the field strength
tensor Gμν to the gauge fields, ϕr are the complex scalar
fields of extended supersymmetry, and Dμ are covariant
derivatives. The indices i ¼ 1;…; 4 and r ¼ 1;…; 3 refer
to the SU(4) and SOð6Þ ≃ SUð4Þ groups of internal
symmetry, respectively. The symbol Ŝ implies a symmet-
rization of the respective tensor in the Lorentz indices
μ1;…; μj and a subtraction of all its possible traces. As
mentioned above, these operators form the multiplicatively
renormalized operators, whose anomalous dimensions are
expressed through the so-called universal anomalous
dimension up to integer argument shifts [36],

γuniðjÞ ¼
X∞
n¼1

γðn−1Þuni ðjÞg2n; g2 ¼ λ

16π2
; ð4Þ

where λ ¼ g2YMNc is the ‘t Hooft coupling constant.
In the planar limit, γuniðjÞ is analytically known for

arbitrary j through seven loops [37–42] and for special
values of j even through ten loops [43–50], e.g., for j ¼ 4
corresponding to the Konishi operator. In the latter case, we
quote the result through four loops [43–45] here

γKonishi;planar ¼ γuni;planarð4Þ ¼ 12g2 − 48g4 þ 336g6

þ 96g8ð−26þ 6ζ3 − 15ζ5Þ þOðg10Þ: ð5Þ

As for the nonplanar contributions to γuniðjÞ at Oðg8Þ,
the state of the art is given by [32–34]

γð3Þuni;npð4Þ ¼ −360ζ5
48

N2
c
; ð6Þ

γð3Þuni;npð6Þ ¼
25

9
ð21þ 70ζ3 − 250ζ5Þ

48

N2
c
; ð7Þ

γð3Þuni;npð8Þ ¼
49

600
ð1357þ 4340ζ3 − 11760ζ5Þ

48

N2
c
; ð8Þ

where we have pulled out common factors. If such a
factorization were preserved for the higher j values, this
could considerably simplify the procedure of finding the

general form of γð3Þuni;npðjÞ. In fact, the prefactors in Eqs. (6)–
(8) resemble the harmonic sums

Pj−2
i¼1ð1=iÞ for j ¼ 4, 6, 8,

with values 3=2, 25=12, 49=20, and harmonic sums are also

expected to appear as building blocks of γð3Þuni;npðjÞ, as
explained below.
In this Letter, we extend Eqs. (6)–(8) by the next five

terms. Our computational procedure is similar to Refs. [32–
34]. We work in the programming language FORM [51].
Specifically, we generate all the contributing Feynman
diagrams with DIANA [52] based on QGRAF [53], evaluate
the color traces with COLOR [54], reduce the occurring
scalar integrals to the master integrals of Ref. [55] with the
custom-made program package BAMBA based on the
Laporta algorithm [56], and reduce the propagator-type
diagrams to fully massive tadpole diagrams using infrared
rearrangement [57] (see also Refs. [55,58,59] for details).
Typical Feynman diagrams are depicted in Fig. 1. This
setup allows us to proceed to j ¼ 10 only. Further progress

FIG. 1. Typical Feynman diagrams contributing to γð3Þuni;npðjÞ.
The operators are inserted in the lines or gauge vertices.
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is enabled by the recently developed package FORCER [60]
based on FORM [51], which was also used to compute
anomalous dimensions of twist-two operators in QCD
[61,62]. We may thus proceed to j ¼ 18, where about
one year of running on the modern high-performance
computing facilities available to us is required.
Altogether, we have

γð3Þuni;npð10Þ ¼
�
220854227

1411200
þ 27357

56
ζ3 −

579121

490
ζ5

�
48

N2
c
;

ð9Þ

γð3Þuni;npð12Þ ¼
�
28337309747461

144027072000
þ 345385183

571536
ζ3

−
54479161

39690
ζ5

�
48

N2
c
; ð10Þ

γð3Þuni;npð14Þ ¼
�
9657407179406311

41493513600000
þ 158654990663

224532000
ζ3

−
7399612441

4802490
ζ5

�
48

N2
c
; ð11Þ

γð3Þuni;npð16Þ ¼
�
74429504651244877

280496151936000
þ 205108095887

256864608
ζ3

−
1372958223289

811620810
ζ5

�
48

N2
c
; ð12Þ

γð3Þuni;npð18Þ ¼
�
8122582838282649980649377

27516111512617728000000

þ 72169501556777041

81811377648000
ζ3

−
5936819760481

3246483240
ζ5

�
48

N2
c
: ð13Þ

Our result for j ¼ 10 agrees with Ref. [35]. In contrast to
Eqs. (6)–(8), it is not possible to extract common factors in
Eqs. (9)–(13), so that our expectations regarding factori-
zation have to be dropped.
Equipped with the information contained in Eqs. (6)–

(13), we now try to reconstruct the general form of
γð3Þuni;npðjÞ, i.e., to determine the j dependence of the
coefficients of ζ5 and ζ3 and the rational reminder in the
Ansatz

γð3Þuni;npðjÞ ¼ ½γð3Þuni;np;ζ5
ðjÞζ5 þ γð3Þuni;np;ζ3

ðjÞζ3
þ γð3Þuni;np;rationalðjÞ�

48

N2
c
: ð14Þ

For this purpose, we adopt a powerful method based on
number theory, which has been proposed in Ref. [63] and
successfully applied to the reconstruction of anomalous

dimensions in N ¼ 4 SYM theory [41,42,64] and QCD
[61,65,66]. This method is based on the assumption that
γð3Þuni;np;ζ5

ðjÞ, γð3Þuni;np;ζ3
ðjÞ, and γð3Þuni;np;rationalðjÞ in Eq. (14) are

linear combinations of certain basis functions with certain
coefficients. As for the basis functions and coefficients, we
are guided by several heuristic observations.
As for the basis functions, in the case of anomalous

dimensions of twist-two operators in N ¼ 4 SYM theory,
these are known to be generalized harmonic sums, defined
as [67,68]

Sa1;…;anðMÞ ¼
XM
j¼1

½signða1Þ�j
jja1j

Sa2;…;anðjÞ; ð15Þ

where the indices a1;…; an may take all (positive and
negative) integer values, except for −1. The weight or
transcendentality l of the sum Sa1;…;an is defined as
the sum of the absolute values of its indices,
l ¼ ja1j þ � � � þ janj, and the weight of a product of
generalized harmonic sums is equal to the sum of their
weights.
For twist-two operators, there is an additional simplifi-

cation, thanks to the so-called generalized Gribov-Lipatov
reciprocity [69–72], which reflects the symmetry of the
underlying processes under the crossing of scattering
channels. As a consequence, the harmonic sums can enter
the anomalous dimensions only in the form of special
combinations satisfying the above-mentioned property by
themselves. In practice, this allows us to impose restrictions
on the choice of basis functions leaving us with a
smaller number of so-called binomial harmonic sums,
defined as [67]

Sa1;…;anðNÞ¼
XN
j¼1

ð−1ÞjþN

�
N
j

��
Nþj
j

�
Sa1;…;anðjÞ: ð16Þ

They only have positive-integer indices, while their tran-
scendentality is the same as for usual harmonic sums. There
are 2l−1 binomial harmonic sums at transcendentality l.
While reciprocity has not yet been rigorously proven,
counterexamples have not been encountered either. In
particular, the anomalous dimensions of the twist-two
operators in the planar limit of N ¼ 4 SYM theory, which
are known through seven loops, may all be represented in
terms of binomial harmonic sums and their derivatives. In
the planar limit of QCD, the nonsinglet quark anomalous
dimensions at four loops can also be written in terms of
binomial harmonic sums and their derivatives [61].
Furthermore, the Feynman diagrams contributing to
γð3Þuni;npðjÞ at subleading order in Nc also contribute to its
planar counterpart, as may be seen from Fig. 1. These
observations suggest that reciprocity should work for the
case at hand, which is also confirmed by a nontrivial self-
consistency test within our calculation, as explained below.
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According to the maximal-transcendentality principle
[36], the anomalous dimensions of twist-two operators at
lth order in N ¼ 4 SYM theory are of transcendentality
2l − 1, which is seven for our case of l ¼ 4. Thus,
γð3Þuni;np;ζ5

ðjÞ, γð3Þuni;np;ζ3
ðjÞ, and γð3Þuni;np;rationalðjÞ in Eq. (14)

are of transcendentalities 2, 4, and 7; i.e., they are
composed of 2, 8, and 64 binomial harmonic sums of
the respective transcendentality.
As for the coefficients in front of the basis functions,

inspection of the expressions of the j-dependent anomalous
dimensions that are already known reveals that they are
usually small integer numbers. So, in general, we obtain a
system of Diophantine equations. If the number of equa-
tions is equal to the number of variables, then we can solve
such a system exactly. However, this requires the knowl-
edge of the anomalous dimensions for a large number of
fixed j values. Fortunately, the system of Diophantine
equations can be solved with the help of special methods
from number theory even if the number of equations is less
than the number of variables. In fact, we may then apply the
Lenstra-Lenstra-Lovasz algorithm [73], which allows us to
reduce the matrix obtained from the system of Diophantine
equations to a form in which the rows are the solutions of
the system with the minimal Euclidean norm.
Equation (6) is sufficient to fix the two coefficients in the

Ansatz for γð3Þuni;np;ζ5
ðjÞ. The result,

γð3Þuni;np;ζ5
ðjÞ ¼ −40S2

1ðj − 2Þ; ð17Þ

thus obtained a long time ago [32] has been confirmed by
all subsequent results in Eqs. (7)–(13). To determine the

eight coefficients in the Ansatz for γð3Þuni;np;ζ3
ðjÞ, we need five

input relations. Using Eqs. (6)–(10), we find

γð3Þuni;np;ζ3
ðjÞ ¼ 8ð8S4 − 9S1;3 − 3S2;2 − 4S3;1

þ 4S1;1;2 þ 5S1;2;1 − S2;1;1Þ; ð18Þ

where Sa ¼ Saðj − 2Þ, which is in agreement with
Eqs. (11)–(13). By the way, this nicely supports our

suggestion that reciprocity should work for γð3Þuni;npðjÞ as
well. At any rate, the eight inputs from Eqs. (6)–(13)
uniquely fix Eqs. (17) and (18). Unfortunately, these inputs
do not yet suffice to determine the coefficients of the
64 binomial harmonic sums of transcendentality 7 in

γð3Þuni;np;rationalðjÞ beyond all doubt via the number theoretical
procedure outlined above.
Nevertheless, we may exploit the information encoded in

Eqs. (6)–(13) to numerically recover the nonplanar con-
tribution to the cusp anomalous dimension with useful
precision. To this end, we proceed along the lines of
Refs. [61,62] and approximately reconstruct the four-loop
splitting function. We recall that the n-loop splitting
function PðnÞðxÞ is related to the anomalous dimension

of the respective twist-two spin-j operator, with
j ¼ 2; 4; 6;…, by a Mellin transformation,

γðnÞðjÞ ¼ −
Z

1

0

dxxj−1PðnÞðxÞ; ð19Þ

where the negative sign is a standard convention.
In QCD, the diagonal splitting functions at n loops, in

general, assume the following form in the limit x → 1 [71]:

Pðn−1Þ
kk ðxÞ ¼ AðnÞ

k

ð1 − xÞþ
þ BðnÞ

k δð1 − xÞ þ CðnÞ
k lnð1 − xÞ

þDðnÞ
k þO½ð1 − xÞ lnlð1 − xÞ�; ð20Þ

where k ¼ q, g and the þ distribution is defined as
usual,

R
1
0 dxfðxÞ=ð1 − xÞþ ¼ R

1
0 dx½fðxÞ − fð1Þ�=ð1 − xÞ.

AðnÞ
q and AðnÞ

g are the n-loop quark and gluon cusp anomalous
dimensions, respectively [24]. In N ¼ 4 SYM theory, the
splitting functions, being related to the anomalous dimen-
sions through the Mellin transformation in Eq. (19), satisfy
the maximal-transcendentality principle [36], and we may

use Eq. (20), with kk replaced by np. SinceCðnÞ
k andDðnÞ

k can
be predicted from lower-order information [71] and non-
planarity appears for the first time at n ¼ 4, we have

Cð4Þ
np ¼ Dð4Þ

np ¼ 0. Following Refs. [61,62], we make
Ansätze for approximations of the splitting function

Pð3Þ
uni;npðxÞ, which consist of (i) the two large-x parameters

Að4Þ
np and Bð4Þ

np , (ii) two out of the three large-x logarithms
ð1 − xÞ lnkð1 − xÞ with k ¼ 1; 2; 3, (iii) two out of
the three small-x logarithms lnk x with k ¼ 1; 2; 3,
and (iv) two out of the five polynomials ð1 − xÞxk
with k ¼ 0;…; 4. These are ð3

2
Þð3

2
Þð5

2
Þ ¼ 90 trial functions

with eight coefficients each, which we pin down using the
eight available inputs in Eqs. (6)–(13). For each coefficient,
we determine, from the values thus resulting, the
central value to be half of the sum of the largest and smallest
ones and the error to be half of their difference. Using

all 90 solutions, we find Að4Þ
np ¼ −48 × ð98.1� 5.8Þ and

Bð4Þ
np ¼ 48 × ð203.6� 32.4Þ. We may considerably improve

these results by rejecting 20 unlikely solutions, involving

particularly large coefficients, to obtain Að4Þ
np ¼ −48 ×

ð97.5� 0.6Þ and Bð4Þ
np ¼ 48 × ð207.0� 3.0Þ. The former

result nicely agrees with the one from Refs. [27,28,31],

Að4Þ
np ¼ −48ð992π6=315þ 1152ζ23Þ ¼ −48 × 97.75, while

the latter is new. We emphasize that our method of
computation is completely independent from Refs. [25–
28,31]. Our final result for the cusp anomalous dimension
through four loops is
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γcusp ¼ 8g2 − 26.32g4 þ 190.49g6

−
�
1874.86þ ð97.5� 0.6Þ 48

N2
c

�
g8 þOðg10Þ: ð21Þ

To summarize, using modern computational techniques,
we have considerably advanced our knowledge of the
nonplanar sector of N ¼ 4 SYM theory by studying the
universal anomalous dimension of the local, gauge-invari-
ant, SU(4)-singlet, twist-two operators of definite Lorentz
spin j at four loops. Specifically, we have pushed the state
of the art from j ¼ 10 [32–35] to j ¼ 18 upon providing a
first independent confirmation of the recent result for
j ¼ 10 [35]. The four new terms for j ¼ 12;…; 18 are
all in agreement with the generic coefficient of ζ5 already
derived in Ref. [32]. The new information allowed us to
uniquely determine also the generic coefficient of ζ3, but it
does not yet suffice to pin down the generic expression of
the rational term. However, following Refs. [61,62], we
managed to find a rather precise numerical result for the
j → ∞ limit of the universal anomalous dimension by
considering the x → 1 limit of the corresponding splitting
function. The result for the cusp anomalous dimension thus
obtained agrees with previous determinations based on very
different approaches [25–28,31].
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