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Stable nonsupersymmetric anti–de Sitter (AdS) vacua of string theory are widely believed not to exist.
In this Letter, we analytically compute the full bosonic Kaluza-Klein spectrum around the G2-invariant
nonsupersymmetric AdS4 solution of massive IIA supergravity and show that it is perturbatively stable.
We also provide evidence that six other nonsupersymmetric AdS4 solutions of massive IIA supergravity are
perturbatively stable. Since previous studies have indicated that these AdS vacua may also be non-
perturbatively stable, our findings pose a challenge to the swampland conjecture.
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Constructing stable nonsupersymmetric vacua of string
theory is one of its foremost challenges and crucial for
applications to phenomenology, cosmology, and hologra-
phy. Unlike their supersymmetric counterparts, such vacua
are not protected by supersymmetry arguments and positive
mass theorems [1]. The stability of nonsupersymmetric
anti–de Sitter (AdS) vacua is particularly interesting, since
they would provide a crucial tool for applying holography
to realistic systems in condensed matter or indeed QCD.
Moreover, nonsupersymmetric AdS vacua might be a
stepping stone to understanding time-dependent de Sitter
solutions in string theory.
The stability of nonsupersymmetric AdS vacua has

proven particularly contentious in recent years. Various
arguments have been put forward based on the weak gravity
conjecture [2] that all nonsupersymmetric AdS vacua of
string theory are unstable, ultimately leading to the AdS
swampland conjecture [3]. Moreover, despite years of
trying, no fully fledged case of a stable nonsupersymmetric
AdS vacuum is known in string theory. Indeed, a
powerful method for constructing nonsupersymmetric
AdS vacua involves uplifting nonsupersymmetric solutions
of lower-dimensional supergravities via a consistent trun-
cation. However, all but a small number of these AdS
solutions are already unstable within the lower-dimensional
supergravity, with some of the scalar fields violating the
Breitenlohner-Freedman (BF) bound [4]. Notable excep-
tions to this are the nonsupersymmetric SOð3Þ × SOð3Þ-

invariant AdS4 vacuum of four-dimensional N ¼ 8 SO(8)
gauged supergravity [5] obtained by consistent truncation
of 11-dimensional supergravity on S7 [6], and seven non-
supersymmetric AdS4 vacua of four-dimensional N ¼ 8
ISO(7) gauged supergravity (see Appendix A of Ref. [7]
for a summary and original references) obtained by con-
sistent truncation of massive IIA supergravity on S6 [8].
Remarkably, for these nonsupersymmetric AdS4 vacua, all
70 scalar fields in the N ¼ 8 supergravity multiplet have
masses above the BF bound [7,9].
Although these vacua are stable in four dimensions,

their higher-dimensional stability is far from guaranteed.
For example, the Kaluza-Klein (KK) spectrum around
such vacua could contain tachyonic scalars violating the
BF bound, or the AdS vacua may exhibit nonperturbative
instabilities. Understanding the higher-dimensional sta-
bility has long been a challenge for these vacua, since both
the computation of Kaluza-Klein spectra and the system-
atic search for nonperturbative instabilities (see, e.g.,
Ref. [10]) used to be notoriously difficult. However,
within the last year, a new and powerful method based
on exceptional field theory (ExFT) [11] was developed in
Refs. [12,13] for computing Kaluza-Klein spectra of
vacua of maximal gauged supergravities. At the same
time, Ref. [14] showed that probe branes can be used
to easily search for signals, dubbed brane-jet instabilities,
of nonperturbative instabilities [10]. These new methods
were used to show that the SOð3Þ × SOð3Þ-invariant
AdS4 vacuum has tachyonic Kaluza-Klein modes [15]
and suffers from M2-brane-jet instabilities [14], with
brane-jet instabilities also arising for other AdS
vacua [16].
In this Letter, we will investigate the Kaluza-Klein

spectrum of the seven nonsupersymmetric AdS4 vacua
of the maximal ISO(7) supergravity, which correspond to
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compactifications of massive IIA supergravity on various
deformed S6 spheres and are stable within the four-
dimensional supergravity. In particular, we focus on
the vacuum with the largest bosonic symmetry, G2.
Remarkably, and in contrast to the SOð3Þ × SOð3Þ sym-
metric AdS4 vacuum of the SO(8) theory, the AdS4 vacuum
with G2 symmetry has shown to be Dp-brane-jet stable for
p ¼ 2, 4, 6, 8, while some other nonperturbative channels
have also been ruled out [7]. Moreover, a partial search for
the other six AdS4 vacua has also found no signs of
D2-brane-jet instabilities [7]. Finally, because the compac-
tification spaces have S6 topology supported by fluxes,
these vacua do not suffer from decays due to “bubbles of
nothing” of the type argued in Ref. [17]. This suggests that
these vacua may be nonperturbatively stable, making it
even more important to study their perturbative Kaluza-
Klein stability in light of the weak gravity and swampland
conjectures. This is what we set up to do in this Letter. In
particular, we compute the full Kaluza-Klein spectrum of
the G2-invariant vacuum, providing the first analytic
spectrum of a nonsupersymmetric vacuum, and use this
to prove its perturbative stability. Moreover, we collect
numerical evidence for the perturbative stability of the six
other AdS4 vacua.
In Refs. [12,13], ExFTwas used to derive mass matrices

for the Kaluza-Klein spectrum around any vacuum of
N ¼ 8 gauged supergravities in four and five dimensions
that arises from a consistent truncation of ten- or 11-
dimensional supergravity. Let us briefly review some of the
salient features of ExFT and Kaluza-Klein spectroscopy.
ExFT is a reformulation of ten- or 11-dimensional

supergravity, which unifies the metric and flux degrees
of freedom within a manifestly E7ð7Þ covariant formulation.
Its bosonic sector

fgμν;MMN;Aμ
Mg; μ ¼ 0;…; 3;

M ¼ 1;…; 56 ð1Þ

consists of an external and an internal metric gμν, MMN ,
respectively, with the latter parametrizing the coset space
E7ð7Þ=SUð8Þ, together with vector fields Aμ

M transforming
in the 56 of the group E7ð7Þ.
As shown in Refs. [12,13], a general Kaluza-Klein

fluctuation around a vacuum that uplifts from four-
dimensional gauged supergravity can be expressed as a
product of the modes of the consistent truncation, with a
complete basis of functions on the compactification mani-
fold. A powerful feature of this method is that this complete
basis of functions can be chosen to be the scalar harmonics
YΣ of the compactification with a metric that preserves
the largest possible symmetry group Gmax in the lower-
dimensional gauged supergravity. In the case of the
maximal ISO(7) supergravity investigated in this Letter,
the internal space topology is S6, the largest possible

symmetry group is Gmax ¼ SOð7Þ, and we can choose
the YΣ to be the scalar harmonics on the round S6.
The fluctuation ansatz of the ExFT fields (1) around an

AdS4 vacuum is given by [12,13]

gμνðx;yÞ¼ ρ−2
�
g̊μνðxÞþ

X
Σ
YΣhμν;ΣðxÞ

�
;

Aμ
Mðx;yÞ¼ ρ−1ðU−1ÞAM

X
Σ
YΣAμ

A;ΣðxÞ;

MMNðx;yÞ¼UM
AUN

B

�
δABþPAB;I

X
Σ
YΣjI;ΣðxÞ

�
; ð2Þ

where the Kaluza-Klein fluctuations for the metric, vector
fields, and scalars are labeled by hμν;ΣðxÞ, Aμ

A;Σ, and
jI;Σ ∈ e7ð7Þ ⊖ suð8Þ, respectively. The latter appear under
projection PAB;I , with I ¼ 1;…; 70 resulting from the
expansion of the group element MMN . On the other hand,
ρðyÞ ∈ Rþ and UM

MðyÞ ∈ E7ð7Þ denote the scaling func-
tion and the twist matrix, respectively, encoding the
consistent truncation to N ¼ 8 gauged supergravity [18].
In the fluctuation ansatz (2), the twist matrix appears
dressed with the scalar matrix of the four-dimensional
supergravity VM

A ∈ E7ð7Þ=SUð8Þ evaluated at the scalar
configuration specifying the vacuum of the maximalD ¼ 4
supergravity, i.e.,

UM
AðyÞ ¼ UM

MðyÞVM
A: ð3Þ

The fluctuation ansatz (2) induces mass matrices for
the Kaluza-Klein spectrum which are entirely expressed
through the embedding tensor of the N ¼ 8 gauged
supergravity XMN

P and the linear action TMΣ
Ω of the

Gmax Killing vector fields on the scalar harmonics, both
dressed by the scalar matrix VM

A. The matrices TMΣ
Ω are

explicitly defined as

LKM
YΣ ¼ −TMΣ

ΩYΩ; ð4Þ

where KM are the Killing vectors generating Gmax, which
can be extracted from the twist matrix UM

M. In turn, the
dressed objects are defined as

XAB
C ¼ ðV−1ÞAMðV−1ÞBNXMN

PVP
C;

TAΣΩ ¼ ðV−1ÞAMTMΣ
Ω: ð5Þ

The mass matrices are obtained by linearizing the ExFT
field equations with the fluctuation ansatz (2) [12,13]. For
the purpose of this Letter, we give the scalar mass matrix in
a yet more compact form:
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MðscalarÞ
IΣ;JΩ ¼ Mð0Þ

IJ δΣΩ þ δIJM
ð2Þ
ΣΩ þN IJ

CT C;ΣΩ

−
1

6
ðΠTΠÞIΣ;JΩ: ð6Þ

Here,Mð0Þ
IJ andMð2Þ

ΣΩ ¼ −ðT AT AÞΣΩ are the mass matrices
of the four-dimensional supergravity scalars and of the
spin-2 fluctuations, respectively. The matrices in the last
two terms are given by

ΠAΣ;IΩ ¼ δΣΩXAC
DPCD;I − 12PAD;IT DΩ

Σ;

N IJ
C ¼ −4ðXCA

B þ 12XAB
CÞPAD

½IPBD
J�: ð7Þ

In particular, the matrix ΠAΣ;IΩ features in the linearized
covariant scalar derivatives, ∂μjI;Σ −Aμ

CΩΠCΩ;IΣ and thus
encodes the projection onto the Goldstone scalars.
Accordingly, it is orthogonal to the mass matrix and
encodes the vector mass matrix as MðvectorÞ ¼ ΠΠT .
Let us now specialize to the specific ISO(7) gauged

supergravity whose vacua we are interested in. In terms of
SLð7Þ ⊂ E7ð7Þ defined by the branching of the 56 as

AM → fA½ab�; Aa8; A½ab�; Aa8g; ð8Þ
with a ¼ 1;…; 7, the only nonzero components of the
embedding tensor are

XMN
P ¼

8>>>>><
>>>>>:

Xabcd
ef ¼ −Xab

ef
cd ¼ −8δ½e½aδb�½cδ

f�
d�;

Xab c8
d8 ¼ −Xab

d8
c8 ¼ −2δd½aδb�c;

Xc8 ab
d8 ¼ −Xc8

d8
ab ¼ −2δc½aδ

d
b�;

Xc8
ab

d8 ¼ −Xc8 d8
ab ¼ 2cδc½aδ

d
b�:

ð9Þ

Here, c is a magnetic parameter that renders the gauging
of dyonic type [19,20] and which is identified with the
Romans mass parameter [21] in ten dimensions.
For the fluctuation ansatz, we will be using the scalar

harmonics on the round S6, which can be expressed as
symmetric traceless polynomials in the elementary har-
monics Ya satisfying YaYbδab ¼ 1. These are given by

YΣ ¼ f1;Ya;Ya1a2 ;…;Ya1…al ;…g; ð10Þ

with Ya1…al ≡ Yðða1…YalÞÞ and (()) denotes traceless
symmetrization. Therefore, the TMΣ

Ω now simply become
the SO(7) generators in the ½l; 0; 0� representation, with the
only nonzero components given by

Tabc1…cl
d1…dl ¼ 4lδ½aððc1δb�ððd1δd2

c2…δdlÞÞ
clÞÞ: ð11Þ

We stress once more that the harmonics (10) constitute an
appropriate basis for the analysis of all vacua of this theory,
regardless of the specific S6 metric occurring at the vacua.
With the data in Eqs. (9) and (11) specific to the maximal

ISO(7) supergravity, we can now proceed and compute the
KK spectrum of the metric, vector, and scalar fluctuations
around a given AdS4 vacuum specified by the scalar matrix
VM

A via the dressed tensors in Eq. (5).
The maximal ISO(7) supergravity possesses a rich

structure of AdS4 vacua. To date, 60 such vacua have
been identified up to discrete degeneracies (see
Appendix A of Ref. [7]), all of which are contained within
a Z3

2-invariant sector of the theory [22]. This sector
describes an N ¼ 1 supergravity coupled to seven
chiral multiplets with complex scalar components zi
(i ¼ 1;…; 7). Thus, the 56-bein entering the fluctuation
ansatz (2) via the dressed twist matrix in Eq. (3) para-
metrizes a coset subspace

VM
AðziÞ ∈ ½SLð2Þ=SOð2Þ�7 ⊂ E7ð7Þ=SUð8Þ: ð12Þ

The Kähler potential Kðzi; z̄iÞ and holomorphic super-
potential WðziÞ for the complex zi are given by

Kðzi; z̄iÞ ¼ −
X7
i¼1

log½−iðzi − z̄iÞ�;

WðziÞ ¼ 2g½z1z2z3 þ z1z6z7 þ z2z5z7 þ z3z5z6

þ ðz1z5 þ z2z6 þ z3z7Þz4 þ c�; ð13Þ

where g is the coupling constant in the four-dimensional
supergravity that relates to the (inverse) radius of S6.
This truncated sector contains seven nonsupersymmetric

AdS4 vacua, yet stable within D ¼ 4 supergravity. I.e., all
70 scalars from the N ¼ 8 supergravity multiplet have
masses above the BF bound. At these vacua, the ISO(7)
symmetry of the maximal theory is broken to Gres [23–25],
and the mass spectra organize into representations of Gres.
Employing the techniques reviewed above, we now

compute the full bosonic Kaluza-Klein spectra around
these nonsupersymmetric AdS4 vacua. Let us first focus
on the G2-invariant vacuum located at

z1;2;3;4;5;6;7 ¼ 2−
4
3ð−1þ

ffiffiffi
3

p
iÞc1

3; ð14Þ

with AdS radius L2 ¼ 2−
10
3 3

3
2g−2c

1
3, and which was first

constructed directly in ten dimensions in Ref. [26]. The
mass spectrum of bosonic fields in the maximal super-
gravity was presented in Ref. [23], and a first rudimentary
study of its higher-dimensional stability was performed in
Ref. [27]. Here we will compute its full bosonic Kaluza-
Klein spectrum by exploiting the large residual symmetry
group G2 to analytically evaluate the mass matrices (6).
The normalized spin-2 mass matrix reduces to the G2

Casimir operator

L2Mð2Þ
ΣΩ ¼ −L2ðTATAÞΣΩ ¼ 3

2
ðCasG2

ÞΣΩ; ð15Þ
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whose eigenvalues are given by [28]

C½n1;n2� ¼
1

3
ð5n1 þ n21 þ 9n2 þ 3n1n2 þ 3n22Þ ð16Þ

on the ½n1; n2� representation. The spin-2 fluctuations at
level l transform in the ½l; 0� representation, which gives
the mass eigenvalues 1

2
lðlþ 5Þ, in accordance with the

results in Ref. [29].
For the scalar Kaluza-Klein modes, the first three terms

of the (normalized) mass matrix (6) can be shown to
combine into

6δIJδΣΩ þ 3ðCasG2
ÞΣΩδIJ −

3

2
ðCasG2

ÞIΣ;JΩ; ð17Þ

where the two Casimir operators act on the representations
of the spin-2 harmonics and on the scalar fluctuations jI;Σ,

respectively. In contrast, the last term in Eq. (6) only affects
the Goldstone scalars and ensures that these appear with
zero eigenvalues. Putting this together with Eq. (16), we
find that the normalized scalar masses at level l allow for a
surprisingly compact expression in terms of the quadratic
G2 Casimir eigenvalues as

M2
½n1;n2�lL

2 ¼ ðlþ 2Þðlþ 3Þ − 3

2
C½n1;n2�; ð18Þ

where ½n1; n2�l denotes the G2 representation that the
Kaluza-Klein modes at level l appear in. The form of
the scalar mass matrix (6) implies that this mass formula
also extends to the spin-1 sector. In particular, when
evaluated for the first two levels, it reproduces the vector
masses computed in Ref. [30].

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Normalized masses M2L2 and multiplicities for the first four KK levels of spin-0 fluctuations around the six non-
supersymmetric and BF stable AdS4 × S6 solutions of massive IIA supergravity given in Table I. The subfigure labels (a)–(f) correspond
to the ID’s of the different vacua in Table I. The dashed red line marks the BF bound M2L2 ¼ − 9

4
.
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For the spin-0 Kaluza-Klein modes, the relevant repre-
sentations at level l are the product of those of level 0,
2ð½2; 0� ⊕ ½1; 0� ⊕ ½0; 0�Þ, with ½l; 0�, taking care to remove
the Goldstone bosons. For generic l, this gives

2½l − 4; 2� ⊕ ½l − 3; 1� ⊕ ½l − 3; 2� ⊕ 2½l − 2; 0�
⊕ 3½l − 2; 1� ⊕ 2½l − 2; 2� ⊕ ½l − 1; 0�
⊕ 3½l − 1; 1� ⊕ 5½l; 0� ⊕ ½l; 1�
⊕ ½lþ 1; 0� ⊕ 2½lþ 2; 0�; ð19Þ

with care needed for the degeneracies at low l. Similarly,
the spin-1 Kaluza-Klein modes at generic level l transform
in the representations

½l − 3; 1� ⊕ ½l − 3; 2� ⊕ 3½l − 2; 1� ⊕ 3½l − 1; 0�
⊕ 3½l − 1; 1� ⊕ 2½l; 0� ⊕ ½l; 1� ⊕ 3½lþ 1; 0�; ð20Þ

again with care needed for the degeneracies at low l.
Evaluation of the mass formula (18) on the list of G2

representations in Eq. (19) for the tower of spin-0 Kaluza-
Klein modes shows that the masses increase with increas-
ing Kaluza-Klein level l and are positive. This proves
the perturbative stability of the nonsupersymmetric G2

vacuum.
We finally turn to the other six nonsupersymmetric AdS4

solutions of massive IIA supergravity with smaller Gres,
which correspond to compactifications of massive IIA
supergravity on various deformed S6 spheres and are
summarized in Table I. The small residual symmetry
groupsGres do not allow us (for the moment) to analytically
resolve these mass spectra. Instead, we revert to a numerical
evaluation of the mass matrices (6) up to and including KK
level l ¼ 4, with results displayed in Fig. 1. Remarkably,
the analysis shows that all scalars on these levels are
perturbatively stable with their normalized masses lying
above the BF bound. Moreover, as is pictured in Fig. 1, the
lowest-lying normalized masses at each Kaluza-Klein level
l increase monotonically with the level, thus suggesting
that the full spectra will also be stable.
To summarize, we have analytically computed the full

Kaluza-Klein spectrum of the nonsupersymmetric and

G2-invariant AdS4 × S6 background of massive IIA super-
gravity, resulting in the closed mass formula (18) encoding
the entire scalar spectrum. This spectrum does not contain
masses below the BF bound at any level in the KK tower of
spin-0 fluctuations. Therefore, it presents an example of a
nonsupersymmetric, yet perturbatively stable, solution of
ten-dimensional massive IIA supergravity. We recall that
this solution is a well-defined background of massive IIA
string theory [8,31], and that the analysis of Ref. [7] has
moreover excluded Dp-brane-jet instabilities for p ¼ 2, 4,
6, 8. We have also presented evidence that six other
nonsupersymmetric AdS4 × S6 backgrounds of massive
IIA supergravity with smaller residual symmetry are also
perturbatively stable in ten dimensions.
Since these AdS4 vacua have already passed a number of

nontrivial tests regarding their nonperturbative stability,
they seem to provide counterexamples to the belief that
there are no stable nonsupersymmetric AdS vacua of string
theory. Therefore, our findings here challenge the AdS
swampland conjecture [3]. If the swampland conjecture is
to hold, there must be an alternative decay channel for these
nonsupersymmetric AdS4 vacua, which it would be imper-
ative to unearth.
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