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Exact Critical Casimir Amplitude of Anisotropic Systems from Conformal Field Theory
and Self-Similarity of Finite-Size Scaling Functions in d > 2 Dimensions
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The exact critical Casimir amplitude is derived for anisotropic systems within the d =2 Ising
universality class by combining conformal field theory with anisotropic ¢* theory. Explicit results are
presented for the general anisotropic scalar ¢* model and for the fully anisotropic triangular-lattice Ising
model in finite rectangular and infinite strip geometries with periodic boundary conditions. These results
demonstrate the validity of multiparameter universality for confined anisotropic systems and the
nonuniversality of the critical Casimir amplitude. We find an unexpected complex form of self-similarity
of the anisotropy effects near the instability where weak anisotropy breaks down. This can be traced back to
the property of modular invariance of isotropic conformal field theory for d = 2. More generally, for d > 2
we predict the existence of self-similar structures of the finite-size scaling functions of O(n)-symmetric
systems with planar anisotropies and periodic boundary conditions both in the critical region for n > 1 as
well as in the Goldstone-dominated low-temperature region for n > 2.
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Fluctuation-induced thermodynamic forces are ubiqui-
tous in confined condensed matter systems [1]. They exist
in both isotropic systems such as fluids, superfluids,
and binary liquid mixtures [2,3] as well as in anisotropic
systems such as liquid crystals [1,4], superconductors [5],
and compressible solids [6]. Near a critical point, so-called
critical Casimir forces [2,3] arise from long-range critical
fluctuations, which generate a universal finite-size critical
behavior that can be classified in universality classes with
universal critical exponents [7]. Within a universality class
there exist subclasses [8,9] of isotropic and weakly aniso-
tropic d-dimensional systems—the latter have d indepen-
dent nonuniversal correlation-length amplitudes in d
principal directions. While the Casimir force amplitude
at criticality is widely believed to be a universal
quantity [2,3,7,10-14], this is not valid for weakly aniso-
tropic O(n)-symmetric systems with an n-component
order parameter in 2 < d <4 dimensions [8,9,15-17].
Furthermore, low-temperature Casimir forces due to
Goldstone modes [18] exhibit nonuniversal anisotropy
effects [8]. Recently the hypothesis of multiparameter
universality for weakly anisotropic systems has been put
forward [8] but no proof has been given for confined
systems and no detailed analysis has been performed near
the instability where weak anisotropy breaks down. In
particular, the universality properties of the critical Casimir
amplitude of finite anisotropic systems in d =2 have
remained unexplored in the literature.

Two-dimensional systems are of fundamental theoretical
interest since conformal field theory (CFT) is capable of
deriving rigorous results for critical Casimir amplitudes of
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isotropic systems on a strip [12-14,19,20] and for the
partition function at the critical temperature 7. on a
parallelogram [21-25]. In this Letter our focus is on the
critical Casimir force in weakly anisotropic (d =2, n = 1)
Ising-like systems for which CFT has not made any
prediction so far. We show how to combine an exact result
of CFT for the isotropic Ising model on a torus [22,25] with
an exact shear transformation of anisotropic ¢* theory [16]
which, on the basis of multiparameter universality [8,26],
leads to exact predictions for all weakly anisotropic
systems with periodic boundary conditions (PBC) in the
(d =2, n = 1) universality class. We discover unexpected
self-similar structures in the critical Casimir amplitude near
the instability where weak anisotropy breaks down. They
can be traced back to the modular invariance of isotropic
CFT. We also demonstrate the validity of multiparameter
universality for confined systems. More generally, we find
self-similar structures in the O(n)-symmetric ¢* theory
with PBC for 1 <n < oo in d > 2 dimensions in the
presence of planar anisotropies not only near 7, but also
in the Goldstone-dominated low-temperature region of
anisotropic systems with 2 < n < oo.

We consider systems with short-range interactions in a
rectangular L¢~! x L geometry with PBC near an ordinary
critical point. The total free energy F . (divided by kzT)
can be decomposed into singular and nonsingular parts. We
are interested in the singular part F,. of F, at T,.. It is
well known that the critical free-energy density f,. =
]-"C/(L“i‘lL) has the large-L behavior f.(L.L) =
L‘dFCAp) at fixed aspect ratio p = L/Ly [7,10] with a
finite amplitude F.(p), which implies that
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Fe=p"""Fc(p) (1)

is a finite quantity in the large-L limit. The critical Casimir
force in the vertical direction is obtained as

FCas,c = _a(Lfc)/aL = L_ch(p)’ (2)

where the derivative is taken at fixed L. This yields the
critical Casimir amplitude [8,27]

X.(p) = (d=1)F (p) = pOF .(p)/Op = —p 0F ./ 9p. (3)

If two-scale-factor universality [7,10,11] is valid the
amplitudes F ., F., and X, for given geometry and BC,
are universal. In this Letter we show that these amplitudes
exhibit a nonuniversal dependence on microscopic cou-
plings with a complex self-similar structure if the systems
are anisotropic. From CFT we derive exact results for d = 2
for both the scalar ¢* model and the Ising model which
belong to the same universality class.

We outline our strategy in the schematic Fig. 1 for the case
p = 1. The anisotropic ¢* model is characterized by two
important nonuniversal parameters (see also Fig. 2): the
angle Q describing the orientation of the two principal axes

and the ratio ¢ = 5&2 / 5(()2 of the two principal correlation

lengths [26] &) = eX)|4|-1, p=1,2,t = (T = T,)/T.. For
the anisotropic Ising model the corresponding parameters are
denoted by Q" and ¢". Step 1 uses a shear transformation of
the anisotropic ¢* model on a square to an isotropic ¢*
model on a parallelogram that leaves the critical free energy
F . invariant [16]. Step 2 is based on two-scale-factor
universality [7] implying that the critical free energy Fis°
of the isotropic ¢* model is the same as FSFT of the isotropic
Ising model on the same parallelogram described by CFT.
Step 3 employs the hypothesis of multiparameter universal-
ity [8] predicting that ' of the anisotropic Ising model with
p =1 is obtained from F.(q,Q) of the anisotropic ¢*
model by the substitution g — g%, Q — Q. Overall, these
steps are equivalent to an effective shear transformation
(dashed arrow in Fig. 1) between the isotropic Ising model
on a parallelogram and the anisotropic Ising model on a
square.

Step 1: We first consider the anisotropic scalar ¢* lattice
model in a L x L rectangle on a square lattice with lattice
spacing @ and PBC. The Hamiltonian and the total free
energy divided by kgT on N = L L/ @’ lattice points x; =
(xj1,X;n) are defined by [9,16]

H=a {Z (%(p? + uocv?) +
. R

1

K. .
-]

and by Fio = —In{J¥, [* dg,exp(—H)}. The large-
distance anisotropy is described by the symmetric
anisotropy matrix A = (A,z) = (¢7),

Fe(9, Q) Feg®, Q%)
anisotropic anisotropic
©* model multiparameter Ising model
universality
0 Is, QIs
z = Fgt o) L

N

effective
shear trans- invariance shear trans-
: __ Tiso :

formation Fe = ]-'C formation w

i CFT

Fe(e, pp) Feii ()
step 2: / .
p isotropic

two-scale-factor Ising model
universality /O CFT

Fiso = FOFT T = p, exp(ia)

isotropic
<p4 model

/00
a(g,9Q), pp(g, Q)

FIG. 1. Steps of argumentation for the exact relationships
between the critical free energies F . of finite anisotropic and
isotropic ¢* and Ising models in d = 2 (see also Fig. 2).

Ay = }\}EEON_IZ(Xia — Xjo) (Xip = Xjp) Ky (4)
i,j

Weak anisotropy requires positive eigenvalues A, > 0, 1, >
0of A, ie., detA > 0 [28]. It is known [8,9,15-17,26,29]
that anisotropy effects near 7', are described by the reduced
anisotropy matrix A = A/(det A)'/¢ which for d = 2 has
the form [26]

. < qcd +q7 sy
(

A(q.Q) = P (q—q_)CQSQ) (5)

asq +a7" ¢

with g = (4,/4,)"2 = &)/&% and the abbreviations
cq =cosQ, sq = sinQ where Q determines the principal
axes described by the eigenvectors e!!) = (¢q.50)7, e =
(=5, cq)T of A. The exact dependence of Q and ¢ on the
couplings K; ; through a, b, ¢ has been derived in [26].
A shear transformation can be performed such that the
transformed ¢* model on a parallelogram (Fig. 2) has
changed second moments A;ﬁ = 0,3 Tepresenting an
isotropic  system [9,15,26,30]. The transformations
L, =A""2UL and L, =A""?UL of the vertical and
horizontal sides L =Le, and L= Le, yield the

(a)

L
»
. v
\.‘,vé\
I
FIG. 2. (a) Square lattice with vertical (horizontal) side L (L)

and aspect ratio p = [L[/|L;|. Arrows represent the unit vectors
e(l), e of the principal axes for Q = z/5. (b) Transformed
lattice for ¢ = 1/2 with sides L,,, L,, and the angle a and aspect
ratio p, = |L,|/|L,|. (c) Parallelogram parametrized by the
complex modular parameter 7 (11).
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corresponding transformed sides L, and L, of the
parallelogram where the rotation and rescaling matrices

cos Q  sin Q A 0

U= . , A= (6)
—sin Q cos Q 0 4

are employed. The parallelogram is characterized by the

angle 0 < a < = between L, and L, and the transformed

aspect ratio p, = |L,|/|L,|. We find

cot a(q,Q) = —A(q,Q)1, = (¢7' — q) cosQsinQ, (7)
A(q.Q) tan’Q + ¢?

Q) =p =’ ¢

pp(p.q. QP =p XqQ), 1t (8)

for arbitrary p, g, Q which is valid for arbitrary BC. The
singular part F5°(a, p,) of the total free energy at T, of
the isotropic parallelogram is a function of a and p,,. The
shear transformation leaves both the Hamiltonian and
the singular part F . of the total free energy F,, at T,
invariant [9,16], thus F . is determined by

Felp.q.Q)

= Fila(q.Q).p,(p.q.Q)] = p~'F.(p.q.Q).

©)
In the strip limit the shear transformation yields [31]

(g cos’Q + g~ ! sin?Q) 1 X0 (10)

c,strip?

lim X.(p, ¢, Q) =
p—0

where X'f‘s’mp is the amplitude on an isotropic strip.

Equations (9) and (10) demonstrate that F ., F., and X,
depend on microscopic details via g(a, b, ¢) and Q(a, b, ¢),
thus violating two-scale-factor universality. So far it is
unknown how to calculate the dependence of Fi° on a
and p,,.

Step 2: At this point we invoke two-scale-factor univer-
sality for isotropic systems [8,10] which means that
isotropic ¢* and Ising models have the same singular parts
Fiso and FS°. For the Ising model exact information is
available from CFT [22,25]. Via an isotropic continuum
description in terms of a free fermion field an exact
contribution Z¢FT(7) to the partition function of the d = 2
isotropic Ising model on a torus at T'. has been derived. We
choose the same parameters « and p, as for the isotropic ot
model. The Ising parallelogram is described by a complex
torus modular parameter [25]

7(a,p,) =Rer +ilmz = p,exp(ia), (11)
where a is the angle shown in Fig. 2(c) and p, = |z| is the
aspect ratio of the Ising parallelogram. The partition
function is expressed in terms of Jacobi theta functions
0,(0|r) = 6;(z) (in the notation of [25], see [31]) as [22]

ZFN (1) = [02(7)] + 1603(7)| + 10a(2)[]/2In ()], (12)
with 7(z) = [16,(7)05(7)0,(7)]'/3, from which we obtain
FEFT(7) = —In ZCFT (7). The singular part of the total free

energy of the isotropic Ising model at 7', is

Felelapy)] = FEM[ela,py)) = Feolap,).  (13)
where, owing to two-scale-factor universality, the last equation
applies to the transformed ¢* model on the parallelogram. We
define 7(p, ¢, Q) = 7[a(q.Q), p,(p. q. Q)] with a(gq, Q) and
pp(p.q,K) given by (7) and (8). Then we obtain from (13),
9), (1), and (3) our exact result for the Casimir amplitude X .

of the anisotropic ¢* model as
X:(p,q.Q) = =p* OF (p, q.Q)/Ip (14)

with F.(p, ¢, Q) = FT[z(p, ¢, Q)] where the nonuniversal
expressions for g(a,b,c) and Q(a, b, c) [26] have to be
inserted. In the strip limit we obtain [31]

X.(0,q,Q) = —n/[12(gcos’Q + g~ 'sin> Q)],  (15)
in accord with the CFT result —z/12 [12,13] for ¢ = 1.

In Fig. 3 we present contour plots of X, in the complete
Q-g plane for p = 1 and p = 0.5. Contrary to the simple
(Q, g) dependence (15) in strip geometry and to the claim
that the effects of weak anisotropy are fairly harmless [32],
we find unexpectedly complex structures exhibiting the
feature of self-similarity in the regions ¢ < 1 and g > 1
near the border lines ¢ = 0 and ¢ = oo, where det A = 0 or
Ao = 0, i.e., where weak anisotropy breaks down [28].
This self-similarity can be traced back to the property
of modular invariance [25] Z%FT(7) = ZT(z 4 1),
ZFT(7) = ZFT(~1/7) for the partition function of the
isotropic Ising model at T, in a parallelogram geometry
with PBC, i.e., on a torus, which implies ]:ICS"S"(T) =
Feto(=1/7) = F&™°(z + 1). This is illustrated by the
periodic structure of Fo*° in the complex 7 plane
[Fig. 4(a)] which generates a self-similar structure in the
(pp.@) plane [Fig. 4(b)]. The modular transformation

(a) 1 (1,9, (0.5,¢,Q
0.8 ‘
06 .
+
< & 0.0
= 04
o o
0.2 .
—0.5
0.1 02 03 04 05 %0 01 02 03 04 05
[€2l/m [21/=
FIG. 3. Universal contour plot of the critical Casimir amplitude

X.. of the anisotropic d = 2 ¢* model from (14) for p = 1 in (a)
and for p = 0.5 in (b). For the anisotropic d = 2 Ising model, (16)
yields the same plots if ¢ — ¢, Q — Q.
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FE(r) (b)  FE(r(op)

OO0 uvuw »wu-u—uvw

—0.68 >

FIG. 4. Critical amplitude F5™° (13) of the isotropic Ising
model in parallelogram geometry (a) in the complex 7 plane and
(b) in the p,-a plane. The same plot (b) holds for 7' is0 (13) of the
transformed isotropic ¢* model.

7 — —1/7 corresponds to p, = 1/p,, @ = = —a which
yields equivalent parallelograms. The Dehn twist [25]
7 — 7+ 1 yields parallelograms with different p, and a,
but the invariance of F*° can be understood geometri-
cally since a given torus can be cut in different ways such
that different parallelograms with PBC are generated which
all have the same critical free energy on the same torus. By
two-scale-factor universality, the same result applies to F15°
of the isotropic ¢* model on the same torus. The depend-
ence on (p,,a) for the isotropic system in Figs. 2(b) and
4(b) is transferred by the shear transformation (7), (8), and
by (14) to a corresponding dependence of X.(p, ¢, Q) on
(q,Q) as is shown in Fig. 3. We note that so far no
assumption has been made other than the validity of two-
scale-factor universality for isotropic systems.

Step 3: We proceed to the anisotropic triangular Ising
model on an L x L rectangle with the Hamiltonian [26,33]
HY = =37 [E16j40j 411 + 204011 4 + E30,401 411
with spin variables ¢; ; = +1 on a square lattice with PBC.
Both the angle Q"(E,, E,, E5) of the principal axes and the
ratio of the principal correlation lengths ¢"(E|, E,, E3) =
féli)ls / fézi)ls are known functions of E,, E,, E; [26].
Multiparameter universality was proven for bulk systems
in [26], thus the exact critical bulk correlation function is
governed by the Ising anisotropy matrix AS = A(¢", Q)
with the same matrix A as in (5) for the ¢* model, but with
g and Q replaced by ¢ and QF. Since bulk and finite-size
properties are governed by the same anisotropy matrix [8]
we predict that the exact critical Casimir amplitude of the
anisotropic Ising model is given by

Xe(p.q".QF) = =p*0F (p.4". Q") /0p.  (16)

where F.(p, q", Q) is the same function as in (14) but
now the results for ¢*(E|, E,, E3) and Q¥(E|, E,, E3) of
the Ising model [26] have to be inserted. Our predictions go
far beyond all previous special results [12,13,34-39] for
confined isotropic and anisotropic Ising models. Here we
have succeeded in treating the general anisotropic case of
an arbitrary direction of the principal axes described by a
nonzero angle QF in a finite geometry with an arbitrary
aspect ratio p. This is of physical relevance for general

(3)4 X[1,a/c,b/c| (b) . XF[1, E\/Es, B/ Ey)
&
=
5
+
S
00 1 2 3 4
a/c (E1+E3)/E3

FIG.5. Nonuniversal critical Casimir amplitudes X, and X® for
p=1 of the d=2 ¢* and Ising models for (a) detA =
ab—c?>>0,(b)E,+E,>0,E +Ey>0, E, +E; > 0 [40].

anisotropic systems with more complicated interactions
whose principal axes generically have skew directions
relative to the symmetry axes of the underlying lattice.
This advance is made possible by our new approach of
combining exact relations of anisotropic ¢* lattice theory
with exact results of CFT. Specifically our predictions
agree with Ising-model results for isotropic strips
[12,13,34], rectangles [35], and parallelograms [36] as
well as for anisotropic strips [37] and rectangles [38,39]
which constitutes a direct confirmation of multiparameter
universality for confined systems. Thus we predict that the
results in Fig. 3 for the ¢* model are valid also for the Ising
model after substituting ¢ — ¢, Q — QF, i.e., the (¢, Q)
representation has a universal character that is applicable to
all weakly anisotropic systems in the (d =2, n=1)
universality class. It becomes nonuniversal if the depend-
ence of (¢,Q) and (¢, Q%) on a, b, ¢ and E,, E,, E5 is
inserted. We denote these Casimir amplitudes by
X.|[p,a/c,b/c] and X¥[p, E, /Es, E,/E5]. They are shown
in Fig. 5 for p = 1. The nonuniversal differences between
X, and X" confirm the prediction [8,9,15,16] that the
Casimir amplitude X, for weakly anisotropic systems is not
a universal quantity. Even if it is known for one anisotropic
system it cannot be predicted for other anisotropic systems
of the same universality class since € generically depends
in an unknown nonuniversal way on the anisotropic
interactions [26].

In the following we demonstrate that self-similar structures
exist more generally for O(n)-symmetric systems with PBC
ford = 3,n > 1 with a3 x 3 anisotropy matrix A 3. Consider
a Lﬁ x L geometry with p = L/L. In [8] the scaling function
X(%,p. A3) of the Casimir force of the ¢* model has been
derived for n > 1, where & o (T — T,.)L'/" is the scaling
variable. This includes the low-temperature amplitude
Xo(p. A3) = X(—c0,p.A3) due to the Goldstone modes
for n > 2. In particular, the exact result X = lim,__X/n

has been derived in the large-n limit. At fixed X the anisotropy
effect is completely contained in the function

K3(y,€) =) exp(-ym - Cm), (17)
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0.02

qs/(gz +1)

02 03 04 05
[2p]/m

T01 02 03 04 05
[Q]/7

FIG. 6. Universal contour plots of critical and low-temperature
Casimir amplitudes of the d = 3 ¢* theory for n =083 1] with
planar anisotropies (18): X for p = 1 with A( Y in (a) and XO for
p = 0.5 with AY* in (b).

where y is independent of Az. The sum Y, runs over
m = (my,my, m3),m, =0,%1,..., 00 and the 3x3
matrix C has the elements Caﬁ = papﬁ(A3)aﬂ with
p1=pr=p,p3 = 1. We consider two types of planar
anisotropies as described by the anisotropy matrices

. B, 0 ym (1 0
AE,’”:(O 1), A;w:(o 1‘3)' (18)

In (18) the 2 x 2 submatrices B}, and B, describe anisotropies
in the “horizontal” x-y and “vertical” y-z planes, respectively.
The difference between these cases is that the Casimir

force defined in (2) is perpendicular to the x-y anisotropy

in case of Agx,y)

case of Ag‘”). Both By, and B, have the same form as in (5),
with (g, Q) replaced by (gg,Qp)- This suggests that self-
similar structures exist for d = 3 like those found for d = 2.
This is indeed verified by evaluating the exact results for X_.
and X, of [8] for d = 3, n = oo with the planar anisotropies
(18) as shown in Fig. 6. We find similar structures from [8]
for any finite n and X. The self-similar structures of
Fig. 6 disappear in the film limit p — O [8] at finite L but
are maintained in the cylinder limit p — oo [6] at finite L.
We find that, to some extent, this self-similarity can be
traced back to the modular invariance of K;(y,C) (17).
Since a symmetric matrix B with det B = 1 contains only
two independent matrix elements, it can be expressed as

B e ( ) e

—Re(rg) 1
where 73 = Re(rg) + iIm(7g) is a complex number with
Im(z) > 0. Based on the one-to-one relation (19) between
B and 7, we can relate a modular transformation g — 7
to a corresponding matrix B’, with, e.g., 7 = 75 + 1 for
the Dehn twist. The function K3 remains invariant under
such transformations for Az = Agy’z), p=1 and for
Ay = Agx Y and arbitrary p [31]. This is parallel to the
modular invariance of Z°T (7). More generally, we expect

whereas it is parallel to the y-z anisotropy in

|75

self-similar structures also for d = 3 systems with non-
planar anisotropies and PBC.

Conclusion and outlook.—We have studied the depend-
ence of finite-size effects on the principal correlation
lengths and principal axes for the case of PBC. For
d =2, we have achieved a breakthrough by identifying
unexpected self-similar structures via the combination of
isotropic CFT with anisotropic ¢* theory. For d = 3, our
analysis paves the way toward an exploration of finite-size
effects near the borderlines where weak anisotropy breaks
down not only near 7. but also in the Goldstone-dominated
region. On the basis of d =3 finite-size theories
[8,9,41,42] and owing to multiparameter universality we
predict that in all O(n)-symmetric systems with weak
anisotropies and PBC the self-similar structures described
in this Letter appear also in various physical quantities such
as the specific heat and susceptibility. Self-similar struc-
tures do not appear for simple anisotropies with Q = 0, z/4
studied previously [30,38,39,43,44] although two-scale-
factor universality is violated in these cases. Our results
provide strong motivation for investigating the case of other
boundary conditions and to study finite-size effects in
anisotropic systems such as superconductors, magnetic
materials, solids with structural phase transitions, and near
magnetic-field-induced phase transitions [45] where the
interplay between spatial and spin anisotropy is relevant. In
particular, it would be important to explore the crossover
from weak anisotropy to strong anisotropy of cooperative
phenomena such as those near Lifshitz points.
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