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The exact critical Casimir amplitude is derived for anisotropic systems within the d ¼ 2 Ising
universality class by combining conformal field theory with anisotropic φ4 theory. Explicit results are
presented for the general anisotropic scalar φ4 model and for the fully anisotropic triangular-lattice Ising
model in finite rectangular and infinite strip geometries with periodic boundary conditions. These results
demonstrate the validity of multiparameter universality for confined anisotropic systems and the
nonuniversality of the critical Casimir amplitude. We find an unexpected complex form of self-similarity
of the anisotropy effects near the instability where weak anisotropy breaks down. This can be traced back to
the property of modular invariance of isotropic conformal field theory for d ¼ 2. More generally, for d > 2

we predict the existence of self-similar structures of the finite-size scaling functions of OðnÞ-symmetric
systems with planar anisotropies and periodic boundary conditions both in the critical region for n ≥ 1 as
well as in the Goldstone-dominated low-temperature region for n ≥ 2.
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Fluctuation-induced thermodynamic forces are ubiqui-
tous in confined condensed matter systems [1]. They exist
in both isotropic systems such as fluids, superfluids,
and binary liquid mixtures [2,3] as well as in anisotropic
systems such as liquid crystals [1,4], superconductors [5],
and compressible solids [6]. Near a critical point, so-called
critical Casimir forces [2,3] arise from long-range critical
fluctuations, which generate a universal finite-size critical
behavior that can be classified in universality classes with
universal critical exponents [7]. Within a universality class
there exist subclasses [8,9] of isotropic and weakly aniso-
tropic d-dimensional systems—the latter have d indepen-
dent nonuniversal correlation-length amplitudes in d
principal directions. While the Casimir force amplitude
at criticality is widely believed to be a universal
quantity [2,3,7,10–14], this is not valid for weakly aniso-
tropic OðnÞ-symmetric systems with an n-component
order parameter in 2 < d < 4 dimensions [8,9,15–17].
Furthermore, low-temperature Casimir forces due to
Goldstone modes [18] exhibit nonuniversal anisotropy
effects [8]. Recently the hypothesis of multiparameter
universality for weakly anisotropic systems has been put
forward [8] but no proof has been given for confined
systems and no detailed analysis has been performed near
the instability where weak anisotropy breaks down. In
particular, the universality properties of the critical Casimir
amplitude of finite anisotropic systems in d ¼ 2 have
remained unexplored in the literature.
Two-dimensional systems are of fundamental theoretical

interest since conformal field theory (CFT) is capable of
deriving rigorous results for critical Casimir amplitudes of

isotropic systems on a strip [12–14,19,20] and for the
partition function at the critical temperature Tc on a
parallelogram [21–25]. In this Letter our focus is on the
critical Casimir force in weakly anisotropic (d ¼ 2, n ¼ 1)
Ising-like systems for which CFT has not made any
prediction so far. We show how to combine an exact result
of CFT for the isotropic Ising model on a torus [22,25] with
an exact shear transformation of anisotropic φ4 theory [16]
which, on the basis of multiparameter universality [8,26],
leads to exact predictions for all weakly anisotropic
systems with periodic boundary conditions (PBC) in the
(d ¼ 2, n ¼ 1) universality class. We discover unexpected
self-similar structures in the critical Casimir amplitude near
the instability where weak anisotropy breaks down. They
can be traced back to the modular invariance of isotropic
CFT. We also demonstrate the validity of multiparameter
universality for confined systems. More generally, we find
self-similar structures in the OðnÞ-symmetric φ4 theory
with PBC for 1 ≤ n ≤ ∞ in d > 2 dimensions in the
presence of planar anisotropies not only near Tc but also
in the Goldstone-dominated low-temperature region of
anisotropic systems with 2 ≤ n ≤ ∞.
We consider systems with short-range interactions in a

rectangular Ld−1
k × L geometry with PBC near an ordinary

critical point. The total free energy F tot (divided by kBT)
can be decomposed into singular and nonsingular parts. We
are interested in the singular part F c of F tot at Tc. It is
well known that the critical free-energy density fc ¼
F c=ðLd−1

k LÞ has the large-L behavior fcðLk; LÞ ¼
L−dFcðρÞ at fixed aspect ratio ρ ¼ L=Lk [7,10] with a
finite amplitude FcðρÞ, which implies that
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F c ¼ ρ1−dFcðρÞ ð1Þ

is a finite quantity in the large-L limit. The critical Casimir
force in the vertical direction is obtained as

FCas;c ¼ −∂ðLfcÞ=∂L ¼ L−dXcðρÞ; ð2Þ

where the derivative is taken at fixed Lk. This yields the
critical Casimir amplitude [8,27]

XcðρÞ ¼ ðd − 1ÞFcðρÞ − ρ∂FcðρÞ=∂ρ ¼ −ρd∂F c=∂ρ: ð3Þ

If two-scale-factor universality [7,10,11] is valid the
amplitudes F c, Fc, and Xc, for given geometry and BC,
are universal. In this Letter we show that these amplitudes
exhibit a nonuniversal dependence on microscopic cou-
plings with a complex self-similar structure if the systems
are anisotropic. From CFTwe derive exact results for d ¼ 2
for both the scalar φ4 model and the Ising model which
belong to the same universality class.
We outline our strategy in the schematic Fig. 1 for the case

ρ ¼ 1. The anisotropic φ4 model is characterized by two
important nonuniversal parameters (see also Fig. 2): the
angle Ω describing the orientation of the two principal axes

and the ratio q ¼ ξð1Þ0�=ξ
ð2Þ
0� of the two principal correlation

lengths [26] ξðβÞ� ¼ ξðβÞ0�jtj−1, β ¼ 1, 2, t ¼ ðT − TcÞ=Tc. For
the anisotropic Ising model the corresponding parameters are
denoted byΩIs and qIs. Step 1 uses a shear transformation of
the anisotropic φ4 model on a square to an isotropic φ4

model on a parallelogram that leaves the critical free energy
F c invariant [16]. Step 2 is based on two-scale-factor
universality [7] implying that the critical free energy F iso

c

of the isotropic φ4 model is the same asFCFT
c of the isotropic

Ising model on the same parallelogram described by CFT.
Step 3 employs the hypothesis of multiparameter universal-
ity [8] predicting thatF Is

c of the anisotropic Ising model with
ρ ¼ 1 is obtained from F cðq;ΩÞ of the anisotropic φ4

model by the substitution q → qIs, Ω → ΩIs. Overall, these
steps are equivalent to an effective shear transformation
(dashed arrow in Fig. 1) between the isotropic Ising model
on a parallelogram and the anisotropic Ising model on a
square.
Step 1: We first consider the anisotropic scalar φ4 lattice

model in a Lk × L rectangle on a square lattice with lattice
spacing ã and PBC. The Hamiltonian and the total free
energy divided by kBT on N ¼ LkL=ã2 lattice points xi ≡
ðxi1; xi2Þ are defined by [9,16]

H ¼ ã2
�X

i

�
r0
2
φ2
i þ u0φ4

i

�
þ
X
i;j

Ki;j

2
ðφi − φjÞ2

�

and by F tot ¼ − lnfQN
i¼1

R
∞
−∞ dφi exp ð−HÞg. The large-

distance anisotropy is described by the symmetric
anisotropy matrix A ¼ ðAαβÞ ¼ ðac c

bÞ,

Aαβ ¼ lim
N→∞

N−1
X
i;j

ðxiα − xjαÞðxiβ − xjβÞKi;j: ð4Þ

Weak anisotropy requires positive eigenvalues λ1 > 0, λ2 >
0 of A, i.e., detA > 0 [28]. It is known [8,9,15–17,26,29]
that anisotropy effects near Tc are described by the reduced
anisotropy matrix Ā ¼ A=ðdet AÞ1=d which for d ¼ 2 has
the form [26]

Āðq;ΩÞ ¼
�

qc2Ω þ q−1s2Ω ðq − q−1ÞcΩsΩ
ðq − q−1ÞcΩ sΩ qs2Ω þ q−1 c2Ω

�
; ð5Þ

with q ¼ ðλ1=λ2Þ1=2 ¼ ξð1Þ0�=ξ
ð2Þ
0� and the abbreviations

cΩ ≡ cosΩ, sΩ ≡ sinΩ where Ω determines the principal
axes described by the eigenvectors eð1Þ ¼ ðcΩ; sΩÞ⊺, eð2Þ ¼
ð−sΩ; cΩÞ⊺ of A. The exact dependence of Ω and q on the
couplings Ki;j through a, b, c has been derived in [26].
A shear transformation can be performed such that the
transformed φ4 model on a parallelogram (Fig. 2) has
changed second moments A0

αβ ¼ δαβ representing an
isotropic system [9,15,26,30]. The transformations
Lp ¼ λ−1=2UL and Lpk ¼ λ−1=2ULk of the vertical and
horizontal sides L ¼ Lev and Lk ¼ Lkeh yield the

FIG. 1. Steps of argumentation for the exact relationships
between the critical free energies F c of finite anisotropic and
isotropic φ4 and Ising models in d ¼ 2 (see also Fig. 2).

FIG. 2. (a) Square lattice with vertical (horizontal) side L (Lk)
and aspect ratio ρ ¼ jLj=jLkj. Arrows represent the unit vectors
eð1Þ; eð2Þ of the principal axes for Ω ¼ π=5. (b) Transformed
lattice for q ¼ 1=2 with sides Lp, Lpk, and the angle α and aspect
ratio ρp ¼ jLpj=jLpkj. (c) Parallelogram parametrized by the
complex modular parameter τ (11).

PHYSICAL REVIEW LETTERS 126, 060601 (2021)

060601-2



corresponding transformed sides Lp and Lpk of the
parallelogram where the rotation and rescaling matrices

U ¼
�

cos Ω sin Ω
− sin Ω cos Ω

�
; λ ¼

�
λ1 0

0 λ2

�
ð6Þ

are employed. The parallelogram is characterized by the
angle 0 < α < π between Lp and Lpk and the transformed
aspect ratio ρp ¼ jLpj=jLpkj. We find

cot αðq;ΩÞ ¼ −Āðq;ΩÞ12 ¼ ðq−1 − qÞ cosΩ sinΩ; ð7Þ

½ρpðρ; q;ΩÞ�2 ¼ ρ2
Āðq;ΩÞ11
Āðq;ΩÞ22

¼ ρ2
tan2Ωþ q2

1þ q2tan2Ω
; ð8Þ

for arbitrary ρ, q, Ω which is valid for arbitrary BC. The
singular part F iso

c ðα; ρpÞ of the total free energy at Tc of
the isotropic parallelogram is a function of α and ρp. The
shear transformation leaves both the Hamiltonian and
the singular part F c of the total free energy F tot at Tc
invariant [9,16], thus F c is determined by

F cðρ; q;ΩÞ ¼ F iso
c ½αðq;ΩÞ; ρpðρ; q;ΩÞ� ¼ ρ−1Fcðρ; q;ΩÞ:

ð9Þ

In the strip limit the shear transformation yields [31]

lim
ρ→0

Xcðρ; q;ΩÞ ¼ ðq cos2Ωþ q−1 sin2ΩÞ−1Xiso
c;strip; ð10Þ

where Xiso
c;strip is the amplitude on an isotropic strip.

Equations (9) and (10) demonstrate that F c, Fc, and Xc
depend on microscopic details via qða; b; cÞ andΩða; b; cÞ,
thus violating two-scale-factor universality. So far it is
unknown how to calculate the dependence of F iso

c on α
and ρp.
Step 2: At this point we invoke two-scale-factor univer-

sality for isotropic systems [8,10] which means that
isotropic φ4 and Ising models have the same singular parts
F iso

c and F Is;iso
c . For the Ising model exact information is

available from CFT [22,25]. Via an isotropic continuum
description in terms of a free fermion field an exact
contribution ZCFTðτÞ to the partition function of the d ¼ 2
isotropic Ising model on a torus at Tc has been derived. We
choose the same parameters α and ρp as for the isotropic φ4

model. The Ising parallelogram is described by a complex
torus modular parameter [25]

τðα; ρpÞ ¼ Re τ þ i Im τ ¼ ρp expði αÞ; ð11Þ

where α is the angle shown in Fig. 2(c) and ρp ¼ jτj is the
aspect ratio of the Ising parallelogram. The partition
function is expressed in terms of Jacobi theta functions
θið0jτÞ≡ θiðτÞ (in the notation of [25], see [31]) as [22]

ZCFTðτÞ ¼ ½jθ2ðτÞj þ jθ3ðτÞj þ jθ4ðτÞj�=½2jηðτÞj�; ð12Þ

with ηðτÞ ¼ ½1
2
θ2ðτÞθ3ðτÞθ4ðτÞ�1=3, from which we obtain

FCFT
c ðτÞ ¼ − lnZCFTðτÞ. The singular part of the total free

energy of the isotropic Ising model at Tc is

F Is;iso
c ½τðα; ρpÞ� ¼ FCFT

c ½τðα; ρpÞ� ¼ F iso
c ðα; ρpÞ; ð13Þ

where, owing to two-scale-factor universality, the last equation
applies to the transformed φ4 model on the parallelogram. We
define τðρ; q;ΩÞ ¼ τ½αðq;ΩÞ; ρpðρ; q;ΩÞ�with αðq;ΩÞ and
ρpðρ; q;ΩÞ given by (7) and (8). Then we obtain from (13),
(9), (1), and (3) our exact result for the Casimir amplitude Xc

of the anisotropic φ4 model as

Xcðρ; q;ΩÞ ¼ −ρ2 ∂F cðρ; q;ΩÞ=∂ρ ð14Þ

withF cðρ; q;ΩÞ ¼ FCFT
c ½τðρ; q;ΩÞ� where the nonuniversal

expressions for qða; b; cÞ and Ωða; b; cÞ [26] have to be
inserted. In the strip limit we obtain [31]

Xcð0; q;ΩÞ ¼ −π=½12ðq cos2Ωþ q−1 sin2 ΩÞ�; ð15Þ

in accord with the CFT result −π=12 [12,13] for q ¼ 1.
In Fig. 3 we present contour plots of Xc in the complete

Ω-q plane for ρ ¼ 1 and ρ ¼ 0.5. Contrary to the simple
(Ω, q) dependence (15) in strip geometry and to the claim
that the effects of weak anisotropy are fairly harmless [32],
we find unexpectedly complex structures exhibiting the
feature of self-similarity in the regions q ≪ 1 and q ≫ 1
near the border lines q ¼ 0 and q ¼ ∞, where detA ¼ 0 or
λα ¼ 0, i.e., where weak anisotropy breaks down [28].
This self-similarity can be traced back to the property
of modular invariance [25] ZCFTðτÞ ¼ ZCFTðτ þ 1Þ,
ZCFTðτÞ ¼ ZCFTð−1=τÞ for the partition function of the
isotropic Ising model at Tc in a parallelogram geometry
with PBC, i.e., on a torus, which implies F Is;iso

c ðτÞ ¼
F Is;iso

c ð−1=τÞ ¼ F Is;iso
c ðτ þ 1Þ. This is illustrated by the

periodic structure of F Is;iso
c in the complex τ plane

[Fig. 4(a)] which generates a self-similar structure in the
ðρp; αÞ plane [Fig. 4(b)]. The modular transformation

FIG. 3. Universal contour plot of the critical Casimir amplitude
Xc of the anisotropic d ¼ 2 φ4 model from (14) for ρ ¼ 1 in (a)
and for ρ ¼ 0.5 in (b). For the anisotropic d ¼ 2 Ising model, (16)
yields the same plots if q → qIs, Ω → ΩIs.
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τ → −1=τ corresponds to ρp → 1=ρp, α → π − α which
yields equivalent parallelograms. The Dehn twist [25]
τ → τ þ 1 yields parallelograms with different ρp and α,
but the invariance of F Is;iso

c can be understood geometri-
cally since a given torus can be cut in different ways such
that different parallelograms with PBC are generated which
all have the same critical free energy on the same torus. By
two-scale-factor universality, the same result applies toF iso

c
of the isotropic φ4 model on the same torus. The depend-
ence on (ρp; α) for the isotropic system in Figs. 2(b) and
4(b) is transferred by the shear transformation (7), (8), and
by (14) to a corresponding dependence of Xcðρ; q;ΩÞ on
ðq;ΩÞ as is shown in Fig. 3. We note that so far no
assumption has been made other than the validity of two-
scale-factor universality for isotropic systems.
Step 3: We proceed to the anisotropic triangular Ising

model on an Lk × L rectangle with the Hamiltonian [26,33]
HIs ¼ −

P
j;k½E1σj;kσj;kþ1 þE2σj;kσjþ1;k þE3σj;kσjþ1;kþ1�

with spin variables σj;k ¼ �1 on a square lattice with PBC.
Both the angle ΩIsðE1; E2; E3Þ of the principal axes and the
ratio of the principal correlation lengths qIsðE1; E2; E3Þ ¼
ξð1ÞIs0� =ξð2ÞIs0� are known functions of E1, E2, E3 [26].
Multiparameter universality was proven for bulk systems
in [26], thus the exact critical bulk correlation function is
governed by the Ising anisotropy matrix ĀIs ¼ ĀðqIs;ΩIsÞ
with the same matrix Ā as in (5) for the φ4 model, but with
q and Ω replaced by qIs and ΩIs. Since bulk and finite-size
properties are governed by the same anisotropy matrix [8]
we predict that the exact critical Casimir amplitude of the
anisotropic Ising model is given by

XIs
c ðρ; qIs;ΩIsÞ ¼ −ρ2∂F cðρ; qIs;ΩIsÞ=∂ρ; ð16Þ

where F cðρ; qIs;ΩIsÞ is the same function as in (14) but
now the results for qIsðE1; E2; E3Þ and ΩIsðE1; E2; E3Þ of
the Ising model [26] have to be inserted. Our predictions go
far beyond all previous special results [12,13,34–39] for
confined isotropic and anisotropic Ising models. Here we
have succeeded in treating the general anisotropic case of
an arbitrary direction of the principal axes described by a
nonzero angle ΩIs in a finite geometry with an arbitrary
aspect ratio ρ. This is of physical relevance for general

anisotropic systems with more complicated interactions
whose principal axes generically have skew directions
relative to the symmetry axes of the underlying lattice.
This advance is made possible by our new approach of
combining exact relations of anisotropic φ4 lattice theory
with exact results of CFT. Specifically our predictions
agree with Ising-model results for isotropic strips
[12,13,34], rectangles [35], and parallelograms [36] as
well as for anisotropic strips [37] and rectangles [38,39]
which constitutes a direct confirmation of multiparameter
universality for confined systems. Thus we predict that the
results in Fig. 3 for the φ4 model are valid also for the Ising
model after substituting q → qIs, Ω → ΩIs, i.e., the ðq;ΩÞ
representation has a universal character that is applicable to
all weakly anisotropic systems in the (d ¼ 2, n ¼ 1)
universality class. It becomes nonuniversal if the depend-
ence of ðq;ΩÞ and ðqIs;ΩIsÞ on a, b, c and E1, E2, E3 is
inserted. We denote these Casimir amplitudes by
Xc½ρ; a=c; b=c� and XIs

c ½ρ; E1=E3; E2=E3�. They are shown
in Fig. 5 for ρ ¼ 1. The nonuniversal differences between
Xc and XIs

c confirm the prediction [8,9,15,16] that the
Casimir amplitude Xc for weakly anisotropic systems is not
a universal quantity. Even if it is known for one anisotropic
system it cannot be predicted for other anisotropic systems
of the same universality class since Ω generically depends
in an unknown nonuniversal way on the anisotropic
interactions [26].
In the following we demonstrate that self-similar structures

exist more generally for OðnÞ-symmetric systems with PBC
for d ¼ 3, n ≥ 1with a 3 × 3 anisotropy matrixA3. Consider
aL2

k × L geometry with ρ ¼ L=Lk. In [8] the scaling function
Xðx̂; ρ; Ā3Þ of the Casimir force of the φ4 model has been
derived for n ≥ 1, where x̂ ∝ ðT − TcÞL1=ν is the scaling
variable. This includes the low-temperature amplitude
X0ðρ; Ā3Þ≡ Xð−∞; ρ; Ā3Þ due to the Goldstone modes
for n ≥ 2. In particular, the exact result X̂ ¼ limn→∞X=n
has been derived in the large-n limit. At fixed x̂ the anisotropy
effect is completely contained in the function

K3ðy; ĈÞ ¼
X
m

expð−ym · ĈmÞ; ð17Þ

FIG. 4. Critical amplitude F Is;iso
c (13) of the isotropic Ising

model in parallelogram geometry (a) in the complex τ plane and
(b) in the ρp-α plane. The same plot (b) holds for F iso

c (13) of the
transformed isotropic φ4 model.

FIG. 5. Nonuniversal critical Casimir amplitudes Xc and XIs
c for

ρ ¼ 1 of the d ¼ 2 φ4 and Ising models for (a) detA ¼
ab − c2 > 0, (b) E1 þ E2 > 0, E1 þ E3 > 0, E2 þ E3 > 0 [40].
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where y is independent of Ā3. The sum
P

m runs over
m ¼ ðm1; m2; m3Þ; mα ¼ 0;�1;…;�∞ and the 3 × 3

matrix Ĉ has the elements Ĉαβ ¼ ραρβðĀ3Þαβ with
ρ1 ¼ ρ2 ¼ ρ; ρ3 ¼ 1. We consider two types of planar
anisotropies as described by the anisotropy matrices

Āðx;yÞ
3 ¼

�
B̄h 0

0 1

�
; Āðy;zÞ

3 ¼
�
1 0

0 B̄v

�
: ð18Þ

In (18) the 2 × 2 submatrices B̄h and B̄v describe anisotropies
in the “horizontal” x-y and “vertical” y-z planes, respectively.
The difference between these cases is that the Casimir
force defined in (2) is perpendicular to the x-y anisotropy

in case of Āðx;yÞ
3 whereas it is parallel to the y-z anisotropy in

case of Āðy;zÞ
3 . Both B̄h and B̄v have the same form as in (5),

with ðq;ΩÞ replaced by ðqB̄;ΩB̄Þ. This suggests that self-
similar structures exist for d ¼ 3 like those found for d ¼ 2.
This is indeed verified by evaluating the exact results for X̂c

and X̂0 of [8] for d ¼ 3; n ¼ ∞ with the planar anisotropies
(18) as shown in Fig. 6. We find similar structures from [8]
for any finite n and x̂. The self-similar structures of
Fig. 6 disappear in the film limit ρ → 0 [8] at finite L but
are maintained in the cylinder limit ρ → ∞ [6] at finite Lk.
We find that, to some extent, this self-similarity can be

traced back to the modular invariance of K3ðy; ĈÞ (17).
Since a symmetric matrix B̄ with det B̄ ¼ 1 contains only
two independent matrix elements, it can be expressed as

B̄ ¼ 1

ImðτB̄Þ
� jτB̄j2 −ReðτB̄Þ
−ReðτB̄Þ 1

�
; ð19Þ

where τB̄ ¼ ReðτB̄Þ þ iImðτB̄Þ is a complex number with
ImðτB̄Þ > 0. Based on the one-to-one relation (19) between
B̄ and τB̄, we can relate a modular transformation τB̄ → τB̄0

to a corresponding matrix B̄0, with, e.g., τB̄0 ¼ τB̄ þ 1 for
the Dehn twist. The function K3 remains invariant under
such transformations for Ā3 ¼ Āðy;zÞ

3 , ρ ¼ 1 and for
Ā3 ¼ Āðx;yÞ

3 and arbitrary ρ [31]. This is parallel to the
modular invariance of ZCFTðτÞ. More generally, we expect

self-similar structures also for d ¼ 3 systems with non-
planar anisotropies and PBC.
Conclusion and outlook.—We have studied the depend-

ence of finite-size effects on the principal correlation
lengths and principal axes for the case of PBC. For
d ¼ 2, we have achieved a breakthrough by identifying
unexpected self-similar structures via the combination of
isotropic CFT with anisotropic φ4 theory. For d ¼ 3, our
analysis paves the way toward an exploration of finite-size
effects near the borderlines where weak anisotropy breaks
down not only near Tc but also in the Goldstone-dominated
region. On the basis of d ¼ 3 finite-size theories
[8,9,41,42] and owing to multiparameter universality we
predict that in all OðnÞ-symmetric systems with weak
anisotropies and PBC the self-similar structures described
in this Letter appear also in various physical quantities such
as the specific heat and susceptibility. Self-similar struc-
tures do not appear for simple anisotropies withΩ ¼ 0, π=4
studied previously [30,38,39,43,44] although two-scale-
factor universality is violated in these cases. Our results
provide strong motivation for investigating the case of other
boundary conditions and to study finite-size effects in
anisotropic systems such as superconductors, magnetic
materials, solids with structural phase transitions, and near
magnetic-field-induced phase transitions [45] where the
interplay between spatial and spin anisotropy is relevant. In
particular, it would be important to explore the crossover
from weak anisotropy to strong anisotropy of cooperative
phenomena such as those near Lifshitz points.
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3 in (b).

PHYSICAL REVIEW LETTERS 126, 060601 (2021)

060601-5

https://doi.org/10.1103/RevModPhys.71.1233
https://doi.org/10.1103/RevModPhys.71.1233
https://doi.org/10.1088/1742-6596/161/1/012037
https://doi.org/10.1103/PhysRevLett.66.1481
https://doi.org/10.1103/PhysRevLett.66.1481
https://doi.org/10.1103/PhysRevLett.67.3275
https://doi.org/10.1103/PhysRevLett.67.3275
https://doi.org/10.1088/1361-648X/aa4e88
https://doi.org/10.1088/1361-648X/aa4e88
https://doi.org/10.1103/PhysRevLett.92.197003
https://doi.org/10.1103/PhysRevE.84.021108
https://doi.org/10.1103/PhysRevE.97.062128
https://doi.org/10.1103/PhysRevE.77.061128
https://doi.org/10.1103/PhysRevB.30.322
https://doi.org/10.1103/PhysRevLett.56.742
https://doi.org/10.1103/PhysRevLett.56.742
https://doi.org/10.1103/PhysRevLett.56.746
https://doi.org/10.1209/0295-5075/112/66004
https://doi.org/10.1209/0295-5075/112/66004
https://doi.org/10.1088/1742-5468/aa5a68


[15] X. S. Chen and V. Dohm, Phys. Rev. E 70, 056136
(2004).

[16] V. Dohm, J. Phys. A 39, L259 (2006).
[17] B. Kastening and V. Dohm, Phys. Rev. E 81, 061106

(2010).
[18] V. Dohm, Phys. Rev. Lett. 110, 107207 (2013).
[19] J. L. Cardy, in Phase Transitions and Critical Phenomena,

edited by C. Domb and J. L. Lebowitz (Academic,
New York, 1987), Vol. 11, p. 55.

[20] J. L. Cardy, Nucl. Phys. B275, 200 (1986).
[21] J. L. Cardy, Nucl. Phys. B270, 186 (1986).
[22] P. Di Francesco, H. Saleur, and J. B. Zuber, Nucl. Phys.

B290, 527 (1987).
[23] For T ≠ Tc see C. Itzykson, Nucl. Phys. B (Proc. Suppl.)

1A, 185 (1987).
[24] J. L. Cardy, in Fields, Strings and Critical Pheneomena,
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