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The dynamics of entanglement in “hybrid” nonunitary circuits (for example, involving both unitary gates
and quantum measurements) has recently become an object of intense study. A major hurdle toward
experimentally realizing this physics is the need to apply postselection on random measurement outcomes
in order to repeatedly prepare a given output state, resulting in an exponential overhead. We propose a
method to sidestep this issue in a wide class of nonunitary circuits by taking advantage of spacetime duality.
This method maps the purification dynamics of a mixed state under nonunitary evolution onto a particular
correlation function in an associated unitary circuit. This translates to an operational protocol which could
be straightforwardly implemented on a digital quantum simulator. We discuss the signatures of different
entanglement phases, and demonstrate examples via numerical simulations. With minor modifications, the
proposed protocol allows measurement of the purity of arbitrary subsystems, which could shed light on the
properties of the quantum error correcting code formed by the mixed phase in this class of hybrid dynamics.
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The dynamics of quantum entanglement is a topical area
of research in several subfields of physics ranging from
quantum information and quantum gravity to condensed
matter and atomic physics [1–13]. Recent works have
begun to extend this line of research to nonunitary settings,
involving many-body systems subject to repeated measure-
ments [14–40]. Remarkably, this has led to the discovery of
novel entanglement phase transitions in the dynamics of
open quantum systems modeled by circuits of random
unitary gates interleaved with local projective measure-
ments [14–16]. These monitored dynamics exhibit a phase
transition as a function of the measurement rate, separating
a “disentangling” phase (where the entanglement entropy
obeys an area-law) from an “entangling” phase (where it
obeys a volume law). These phases and transitions are only
visible in individual quantum trajectories [41], correspond-
ing to particular sequences of measurement outcomes. Such
“monitored dynamics” are an essential feature of near-term
quantum devices in which modulated interactions with an
environment, say via measurements, are necessary for
unitary control and feedback. Many questions, both on
the transition and on the steady-state phases themselves,
remain active areas of study—notably the universality class
of the transitions [21,22,31] and the nature of the volume-
law phase, which is understood as a dynamically generated
quantum error-correcting code (QECC) hiding information
from local measurements [17–19,26,38].
Measuring entanglement generally requires the prepara-

tion of many identical copies of the same state (either
simultaneously or sequentially) [42–53]. In the presence of
measurements, this becomes extremely challenging as it
requires postselection: a quantum measurement is an
intrinsically random process whose outcomes are sampled

stochastically with Born probabilities, and a quantum
trajectory in this evolution is associated with a specific
record of measurement outcomes. Hence, preparing multi-
ple copies of the same state incurs an exponential post-
selection overhead eOðpLTÞ in the size L and depth T of the
circuit (assuming a finite rate of measurement p). There are
ways to partly overcome this challenge: (i) using a single
reference qubit as a local probe of the entanglement phase
transition [20], which considerably alleviates the posts-
election overhead; (ii) in Clifford circuits, using a combi-
nation of classical simulations and feedback to force
specific measurement outcomes by error correcting any
“wrong” ones. Nevertheless, it is still desirable to directly
access the entanglement properties of more general non-
unitary and non-Clifford evolutions.
In this Letter, we propose a novel method to access

quantum entanglement in a broad class of nonunitary
circuits without facing an exponential postselection barrier.
Specifically, we will consider nonunitary circuits that are
“spacetime dual” (explained below) to unitary evolutions;
and we propose a method for measuring the purity Trðρ2Þ,
related to the second Renyi entropy via Trðρ2Þ ¼ e−S2ðρÞ, for
the whole system as well as for arbitrary subsystems. This
allows access to the purification dynamics of an initially
mixed state, which is intimately related to the entanglement
dynamics of pure states [18]. In particular, the volume-law
entangled phase maps onto the mixed phase, in which the
dynamics generates a QECC that protects information from
measurements, so that an initially mixed state remains mixed
for exponentially long times. Subsystem purity measure-
ments contain key information about the nature of this as-of-
yet poorly understood QECC [18,26,38].
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We note that while the class of nonunitary circuits for
which our method applies is not completely general, it still
encompasses a broad space. To every unitary circuit
comprised of nearest-neighbor two-qubit gates, we can
associate a spacetime-dual circuit (see below) which is
generically nonunitary [54]. Because this is a one-to-one
correspondence, the space of hybrid models we consider is
as large as the space of unitary circuits built from local two-
qubit gates. In particular our results apply to circuits with (a
specific class of) unitary gates interspersed with (specific
types of) forced projective measurements.
Spacetime duality.—Given a two-qubit unitary gate

Uo1;o2
i1;i2

, mapping input qubits i1;2 (bottom legs) to output
qubits o1;2 (top legs), we define its spacetime dual Ũ as the
matrix obtained by flipping the arrow of time by 90°, i.e.,
viewing the left legs as inputs and the right legs as outputs:
Uo1;o2

i1;i2
≡ Ũi2;o2

i1;o1
(Fig. 1). The result of this transformation,

Ũ, is generally not unitary (gates U such that Ũ is also
unitary are known as “dual unitary” and have been studied
intensely recently [55–62]). The generic nonunitarity of Ũ,
and the possibility that it might counter entanglement
growth, has also been employed to pursue more efficient
tensor network contraction schemes [63,64], and similar
ideas were applied to study the complexity of shallow
(2þ 1)-dimensional circuits [65].
In general, one has Ũ≡ 2VH, where V is unitary and H

is a positive semidefinite matrix of unit norm, which can
be seen as a generalized measurement (i.e., an element
of a POVM set [66]; see Ref. [67] for more details). As an
example, U ¼ 1 yields Ũ ¼ 2jBþihBþj, where jBþi ¼
ðj00i þ j11iÞ= ffiffiffi

2
p

is a Bell pair state. Thus the spacetime
duality transformation generally maps unitary circuits to
nonunitary hybrid circuits involving unitary gates as well
as (weak or projective) measurements, up to prefactors.
Crucially, the measurements are forced: the outcome is
deterministic; no quantum randomness is involved. In the
example of U ¼ 1, the outcome is always jBþi. The ability
to avoid postselection in our protocol stems from this
observation.
Postselection-free measurement protocol.—The idea is

to use a “laboratory” system, whose evolution is unitary, to
simulate a “dual” system whose evolution is nonunitary and
realizes purification dynamics. We will use t (t̃) do denote
the arrow of time in the unitary (nonunitary) evolution. The
target purification dynamics starts with a fully mixed state,
ρin ¼ 1=2L̃ on an even number L̃ of qubits (we use a tilde

for quantities defined in the nonunitary time direction) [68].
This is evolved by a nonunitary circuit including
forced measurements, M. The output state, ρout ∝ MM†

[Fig. 2(a)], may be partially or completely purified. We
focus on nonunitary circuits M whose spacetime dual is a
unitary circuit, i.e.,M ¼ ŨM with UM unitary; in this case,
it is possible to view ρout as living on a timelike slice at the
spatial edge of a unitary circuit [Fig. 2(b)]. Likewise the
purity, Trðρout2Þ [Fig. 2(c)], maps under spacetime duality
to a (multipoint) correlation function in an associated
unitary evolution [Fig. 2(d)]: a bipartite one-dimensional
chain in which the left half evolves under the unitary UM,
the right half evolves under RU�

MR (R denotes spatial
inversion), and the only region where the evolution is
nonunitary is the central pair of qubits, where horizontal
bonds (spacelike qubit worldlines) implement the product
of ρout with itself. We additionally note that unitarity of UM
(coupled with special “depolarizing” boundary conditions,
discussed in detail in the Supplemental Material [54])
elides all gates outside forward and backward lightcones
emanating from the central pair of qubits, as in Fig. 2(e).
The goal of the following discussion is to provide an

interpretation of the nonunitary processes taking place at

FIG. 1. Spacetime duality. By swapping the spatial and
temporal axes, a unitary gate U maps onto another, generally
nonunitary gate Ũ.

(a)

(c)

(e) (f)

(b)

(d)

FIG. 2. (a) Purification dynamics: a fully mixed state ρin ∝ 1
(gray lines, bottom) is evolved by a hybrid circuit M, yielding a
state ρout ∝ MM† (purple lines, top). (b) If M ¼ ŨM with UM
unitary, the purification process is spacetime dual to a unitary
evolution. ρout lives on a timelike slice of the circuit (purple legs,
right). (c) Purity of the output state, Trðρ2outÞ. (d) Same tensor
network viewed as a correlation function in a unitary circuit. The
arrow of time t̃ (t) denotes hybrid (unitary) evolution. (e) Protocol
for measuring the purity of ρout, sketched for T ¼ 3. Tensor
network legs are color coded as in (a)–(d). Qubits �1 are
repeatedly initialized in the Bell state P ¼ jBþihBþj (upward
purple arcs) and measured in the Bell basis (downward purple
arcs); the protocol succeeds if all T Bell measurements yield
jBþi. (f) The fraction of runs that are successful up to time T,
NþðTÞ=N tot, yields the purity of ρout on L̃ ¼ 2T qubits.
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the central bond, so that this tensor contraction can be
converted into an operational prescription for the meas-
urement of the purity. In the laboratory (unitary) time
direction, one has a chain of L≡ L̃þ 2 qubits evolved for
time T ≡ L̃=2. We symmetrically label the qubits as
i ¼ f�1;�2;…� ðT þ 1Þg, and denote qubits i ≤ −2
as L (left), i ¼ �1 as C (central), and i ≥ 2 as R (right).
The system is initialized in the state ρ ∝ 1L ⊗ PC ⊗ 1R,
where P ¼ jBþihBþj and jBþi ¼ ð1= ffiffiffi

2
p Þðj00i þ j11iÞ is a

Bell state. It is then evolved in time by a circuit with a
brickwork structure. First a layer of unitary gates, repre-
sented by superoperator Uo

t , acts on the “odd” bonds—a
layer of the circuit UM on L ∪ f−1g and a layer of RU�

MR
on R ∪ fþ1g. Next, a similarly defined unitary layer Ue

t
acts on “even” bonds, which do not include C. There, a
forcedBell measurement takes place: ρ ↦ PC ⊗ TrCðPCρÞ.
The process terminates at time t ¼ T with a final forced
measurement of PC. Using the operator-state representa-
tion, in which jAÞ denotes an operator A as a state with
inner product ðAjBÞ ¼ TrA†B, the forced Bell measure-
ment reads jρÞ ↦ jPCÞðPCjρÞ, and the overall evolution can
be written as

Trðρ2outÞ ∝ ðPjUo
T∘

YT−1

t¼1

½Ue
t ⊗ jPCÞðPCj�∘Uo

t jPÞ; ð1Þ

where jPÞ≡ jPCÞ ⊗ j1L∪RÞ. The purity of the hybrid
circuit output ρout is thus mapped to a ð2TÞ-point corre-
lation function of the projector PC during a unitary
evolution obtained from the original hybrid circuit M via
the spacetime duality.
We are now in a position to recast the result in Eq. (1) as

an operational protocol for measuring the purity of the state
of interest, ρout. The protocol consists of the following
steps: (i) Choose an integer T and prepare a 2ðT þ 1Þ-qubit
chain in the state ρ ¼ 1L ⊗ PC ⊗ 1R=4T . Set t ¼ 1.
(ii) Evolve odd bonds unitarily under Uo

t . (iii) Perform a
Bell measurement on C. If the outcome is jBþi, continue;
otherwise, stop and record a failure. (iv) If t ¼ T, stop and
record a success; otherwise, evolve even bonds unitarily
under Ue

t , increment t by one, and go back to step (ii). Let
the number of “successful” runs out ofNtot trials beNþðTÞ;
then,

Trðρ2outjL̃¼2T;T̃¼TÞ ¼ NþðTÞ=Ntot; ð2Þ

where ρoutjL̃¼2T;T̃¼T denotes the output state of hybrid
dynamics on a system of L̃ ¼ 2T qubits evolved for time
T̃ ¼ T. This is the central result of this Letter. Note that
while we have not kept track of numerical prefactors in this
derivation, the proportionality constant in Eq. (2) turns out
to be exactly one, see Ref. [54].
We emphasize that the above protocol, despite featuring

projective measurements and runs ending in “failure,” does
not use postselection. Indeed, failures increment the

denominator Ntot in Eq. (2) and provide crucial information
for the purity measurement. In other words, copies of the
same state ρout (identical up to control errors) can be
realized deterministically arbitrarily many times. The
exponential overhead of postselection is entirely removed.
Finally, we remark that if one wants to prepare ρout in real
space (as opposed to a timelike slice of the circuit as
obtained above), this can be achieved with an approach
based on gate teleportation [66], using 2T ancillas initial-
ized in jBþi Bell states and OðT2Þ SWAP gates in a 1D
geometry; see Ref. [54].
Entanglement phases.—While a typical hybrid circuit is

generally not dual to a unitary circuit, the space of models
we address is still very large, and it is reasonable to expect a
rich variety of purification phases and entanglement phe-
nomena within this class of models. Here we begin to
explore this space for the purpose of demonstrating that
interesting purification phases are indeed possible, while
leaving the longer-term enterprise of charting this space to
future work.
Surprisingly, despite the presence of measurements,

Eq. (2) suggests that the generic outcome of the purification
dynamics in these models should be a mixed phase, in
which ρout has extensive entropy. Indeed, if the late-time
probability of obtaining jBþi as the outcome of the Bell
measurement on C approaches any value p∞ < 1, then
NþðTÞ—which requires the outcome of all T Bell mea-
surements to be jBþi—decays exponentially at late times.
Therefore the state has a finite entropy density s2 directly
measurable from a decay time constant:

Trðρ2outjL̃¼2T;T̃¼TÞ ∼ e−T=τ ⇒ s2 ≡ ð2τÞ−1: ð3Þ

This is another main result of this Letter.
The mixed-phase outcome should be expected whenever

the unitary circuit UM features any amount of scrambling:
then, any projector jBþihBþj injected in C will irreversibly
grow into a global operator, never refocusing at C; thus the
probability of later obtaining jBþi as a Bell measurement
outcome will be lower than 1, and the above argument will
give a mixed phase. However, exceptions are possible in
nonscrambling circuits.
As an illustration, we map out the purification phases

for a specific model. For computational simplicity
and closer comparison with the known phenomenology,
we choose a set of unitary Clifford circuits whose
spacetime duals consist only of unitary gates and projective
Pauli measurements. We consider a brickwork layer
of two-qubit Clifford gates chosen as indicated in
Fig. 3(a): Probð1Þ ¼ p, ProbðiSWAPÞ ¼ ð1 − pÞJ=2
[69], ProbðSWAPÞ ¼ ð1 − pÞð1 − J=2Þ. Random single-
qubit Clifford gates act before and after each two-qubit gate
so there are no symmetries in the model. As SWAP and
iSWAP are dual unitary while 1̃ ∝ jBþihBþj is a projector,
p ∈ ½0; 1� serves as the measurement rate for the dual
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hybrid circuit. J ∈ ½0; 1� serves as an interaction rate, with
J ¼ 0 giving a noninteracting “swap circuit.” We note that
the spacetime dual of this unitary model is not too different
from the original unitary-projective model considered in
Ref. [14]: single-site Z measurements are replaced by two-
qubit Bell measurements; gates are sampled out of exactly
half of the two-qubit Clifford group, rather than the whole
group. Remarkably, these seemingly small changes yield a
completely different phase diagram, sketched in Fig. 3(b).
Via stabilizer numerical simulations we find three

possible outcomes across the ðp; JÞ parameter space
[results for the entropy density are shown in Fig. 3(c)].
A pure phase is only possible at p ¼ 1, where the circuit
UM consists purely of identity gates and ρout ¼
ðjBþihBþjÞ⊗T is trivially a pure state. Remarkably, it is
unstable to infinitesimal perturbations away from p ¼ 1, in
sharp contrast to other unitary-projective models where the
pure phase is generic for sufficiently high measurement
rates. For any J > 0 and p < 1 (i.e., almost all of parameter
space) we have a mixed phase: indeed, this is the default
outcome for generic interacting circuits. Finally, on the
J ¼ 0 (and 0 < p < 1) line, we have a critical purification
phase, with vanishing entropy density s2 ¼ 0 but divergent
entropy S2 ∼

ffiffiffiffi
T

p
, which we characterize in the following.

Setting J ¼ 0, the circuit maps to a loop model with two
tiles, one associated to 1 (probability p) and one to SWAP
(probability 1 − p), see Fig. 4(a); the qubits move ballis-
tically under SWAP gates and backscatter under 1, thus
tracing random walks with step size l distributed expo-
nentially, ProbðlÞ ∝ ð1 − pÞjlj. Worldlines that begin and
end in ρout define a pure Bell pair entirely contained in the
system, and thus contribute no entropy; on the contrary,
wordlines that begin at the lightcone boundaries (ρin)
and terminate in ρout, or vice versa, yield a fully mixed
qubit in the output state and thus contribute one bit of
entropy [Fig. 4(b)]. How many such worldlines are there?
Because the qubits undergo diffusion [70], only those that
enter the dynamics within OðT1=2Þ steps of ρout are likely
to contribute entropy, see Fig. 4(c). Thus we have
S2ðTÞ ∼

ffiffiffiffi
T

p
, and a stretched-exponential purification

dynamics Trðρout2Þ ∼ e−c
ffiffiffi
T

p
, to be compared with the

exponential decay in the mixed phase.
Subsystem purity and quantum code properties.—

Having established the existence (and prevalence) of the
mixed phase in this class of models, it is interesting to
investigate its properties, especially since the nature of the
QECC defining the mixed phase remains in general poorly
understood [19,26,38]. To access such properties in experi-
ment, one needs to measure not only the entropy of the
entire state, but also of different subsystems.
First we note that for contiguous, even-sized subsystems

of the temporal slice where ρout lives, A ¼ f0 ≤ τ < 2tAg,
the subsystem purity obeys Trðρ2out;AÞ ¼ NðtAÞ=Ntot, and is
therefore obtained for all tA ≤ T, at no additional cost, by
running the protocol up to time T. This follows from elision
of all gates that lie outside a light cone ending in A,
see Ref. [54].
To access general bipartitions, the protocol must be

slightly modified. The key idea is to “trace out” qubits in
the complement of the subsystem of interest Ā by means of
depolarization, e.g., by averaging over random unitary
gates (see Ref. [54]). We find that

Trðρ2out;AÞ ¼ 2ne−noNþðT;AÞ=Ntot; ð4Þ

where ne (no) is the number of even (odd) qubits in
partition Ā, on which a Bell pair is initialized (measured),
and NþðT;AÞ is the number of successful runs based on a
modified criterion: the protocol cannot fail on any of the no
Bell measurements in the partition Ā; if a state other than
jBþi is obtained in such steps, it is reset to jBþi and the
protocol continues instead of failing [54].

(a)

(b)

(c)

FIG. 3. (a) Summary of the Clifford circuit model: probabilities
of 1, iSWAP and SWAP gates. (b) Schematic of purification
phase diagram of the dualized circuit vs p, J. (c) Entropy density
of hybrid circuit output state ρout vs p, J (Clifford simulations on
L̃ ≤ 4096 qubits).

(a) (b) (c)

FIG. 4. Critical phase of the noninteracting (J ¼ 0) Clifford
circuit model. (a) Allowed gates, 1 (blue tile) and SWAP (red
tile). (b) A realization of the circuit for T ¼ 5. The purification
dynamics proceeds left to right; the input qubit worldlines (ρin,
left) are fully mixed; the output state (ρout, right) contains Bell
pairs (arcs) and fully mixed qubits (1 symbols). (c) Coarse-
grained view of the purification dynamics (T ≫ 1). Only qubit
worldlines that enter within a distance ξ ∼ T1=2 of ρout (e.g., green
shaded parabola) are likely to diffuse to ρout and contribute
entropy.
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The purity for such noncontiguous bipartitions in stabi-
lizer states can be used to obtain the contiguous code
distance dcont, an important property of the QECC that
protects the mixed phase (see Ref. [54]). Numerically, we
find that ρout in the mixed phase defines a code with a
power-law divergent, subextensive mutual information and
contiguous distance (in the bulk of the system), similar to
the phenomenology of the mixed phase in other Clifford
models [26,38].
Discussion.—We have shown that a large class of

nonunitary circuits allows direct experimental access to
purification dynamics without postselection, thus side-
stepping a major obstacle toward the observation of
entanglement phases in monitored circuits. This is achieved
by viewing the (nonunitary) spacetime duals of unitary
gates as forced measurements. Our protocol can be used to
measure the purity of the whole system as well as arbitrary
subsystems, and could enable the experimental investiga-
tion of the spatial entanglement structure and QECC
properties in the mixed phase of these models.
While the class of models we study is a measure-zero

subset of all nonunitary circuits, it is nonetheless very large
—in one-to-one correspondence with the space of local
unitary circuits. In this Letter we have studied a simple
family of models as a demonstration; a thorough explora-
tion of this vast space and of the types of entanglement
dynamics it may contain is a fascinating direction for
future work.
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