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A topography in a Newtonian fluid occurs if there is a disturbance near the surface. But what if there is
no such disturbance? We show by optical profilometry that a thin nematic film resting on a topological-
defect-patterned substrate can exhibit a hill or divot at the opposing free (air) interface in the absence of a
topological disturbance at that interface. We propose a model that incorporates several material properties
and that predicts the major experimental features. This work demonstrates the importance of, in particular,
anisotropic surface interactions in the creation of a free-surface topography.
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Freely flowing Newtonian fluids are, in general, unable
to support an equilibrium topography at an interface with
another fluid. Nevertheless, there has been an ongoing
effort to find counterexamples. Under certain conditions it
is known that an orientable Newtonian fluid, examples of
which are nematic (but not smectic [1]) liquid crystals
(LCs), certain polymers, and aqueous mixtures of tobacco
mosaic virus, can support a topography when there is a
disturbance near the interface. This can occur, for example,
with small anisometric structures such as vesicles and
tactoids [2–6], inclusions or defects residing at the free
surface [7–10], or topological defects (TDs) that com-
pletely traverse the fluid film’s thickness and that have
reached the air interface. Such TDs can be pinned to the
solid substrate as, observed by Virga and Schadt [11,12], or
associated with mismatched boundary conditions in a chiral
nematic LC [13,14]. But it is surprising that an orientable
Newtonian fluid can possess an equilibrium free-surface
topography in the absence of a disturbance at or near that
surface. Why should this be? What sort of long-range
interactions could induce an “action-at-a-distance” [15]
variation in the free-surface topography?
In this Letter we show experimentally and theoretically

that a topological defect of strength m ¼ þ1 (a so-called
“boojum”) localized at the underlying substrate in a
nematic LC can create a topography at the opposing
nematic LC-air interface in the absence of any singularity
traversing the film. Our “hybrid” boundary conditions
(nominally planar at the substrate and vertical at the air
interface) result in a topography at the fluid-air interface
based on a trade-off among elasticity, the isotropic com-
ponent of the surface energy (surface tension), and its
anisotropic part (anchoring), providing the first equilibrium
topography of a Newtonian fluid in the absence of a
singularity at the perturbed free surface and that is based
solely on the material properties of the film and its
interfaces.

Experimental details are described in Supplemental
Material [16,17]. A sample was prepared by AFM scribing
a TD pattern of strength m ¼ þ1, φ ¼ 0° (radial) having a
“confinement radius” l on a polymer-coated substrate [18].
A thin layer of liquid crystal 8CB was then spin coated on
the substrate. The LC’s free-surface topography was
measured by optical profilometry.
Figure 1(a) shows a 3D reconstruction of the surface

profile of the LC-air interface for film thickness d ¼ 610�
30 nm above an underlying m ¼ þ1, φ ¼ 0° (radially)
patterned surface. Immediately visible is a hill-like pro-
trusion rising above a nearly flat nematic surface.
Reflecting the underlying pattern, the hill is azimuthally

FIG. 1. (a) Experimental 3D scatter plot of topography at the
LC-air interface induced by an underlying TD at the substrate.
(b) Height profile change at selected temperatures. (c) Peak
height h versus temperature, showing transition temperatures TNA
and TNI .
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symmetric, and its height h above the background increases
monotonically toward r ¼ 0, reaching a peak height
h ¼ 52� 4 nm. This corresponds to 9% of the film’s total
thickness. (Note that we have observed h=d as large as 0.21
in the nematic phase.)
The height distribution hðrÞ changes significantly with

temperature [Fig. 1(b)]. It is virtually flat above the NI
transition temperature TNI ∼ 41 ° C, with a tiny divot
observed in Fig. 1(b) (in this sample only) due to a dust
particle beyond r ¼ l. A small hill becomes visible at the
core after cooling below TNI. This hill grows in height as we
cool further into the nematic, which is our focus. Figure 1(c)
shows the peak height h versus temperature, including the
pretransitional behavior on approaching the nematic to
Smectic-A (SmA) transition temperature. Although effects
in the SmA phase are beyond the scope of the current work
and will be published elsewhere, we note several features
specific to the SmA phase and distinct from the nematic:
formation of curved oily streak defects [2] transverse to the
patterned easy axis; significant transfer of LC to beyond the
patterned region with a hill rising above the patterned region,
all of which is now depressed from the surrounding area; and
an extremely sharp cone whose apex height (66� 5 nm)
now reaches 10% of the film’s asymptotic thickness. These
smectic cones have been observed with absolute heights as
large as h ¼ 200 nm (for d ¼ 1200 nm) and relative heights
as large as 65% (h ¼ 50 nm, d ¼ 75 nm).
Returning to nematic films, the height, shape, and even

the sign of the topography are found to depend on the film
thickness d: Thinner films exhibit taller hills as a fraction of
the film thickness, with h generally decreasing with
increasing film thickness. Additionally, for thinner films
(d ∼ 100 nm), we observe that hills are more likely to have
a domelike (rather than cusplike) shape [Fig. 2(a)], but
become more conical with a singularity at the peak for
thicker films [∼600 nm, Figs. 2(b) and 2(c)]. For the
domelike topography, its rounded shape in conjunction
with the vertical boundary conditions at the air interface
ensure that variations in the director at the substrate smooth
out rapidly with increasing z. Thus, no disclination line
projects from the patterned surface defect through the LC to
the top surface. This behavior is due to an energy balance
and is borne out by our modeling below. Thus, the
domelike behavior indicates the presence of a boojum at
the patterned surface, and that the free-surface topography
is not generated by a local surface defect or transmitted by a
bulk disclination line—this is unlike the case reported in
Refs. [11–14]. Instead, the topography is mediated through
anchoring, as well as elastic forces from the patterned
substrate to the free surface. We also note that the height of
the hill also depends on l, the distance out to which the
radial (m ¼ þ1, φ ¼ 0°) TD is patterned: h increases
monotonically with pattern diameter 2l in the SmA phase
(h ¼ 8, 10, and 14� 2 nm for l ¼ 15, 25, and 35 μm,
respectively for d ¼ 500� 20 nm just below TNA), with

similar but smaller (and thus noisy) results in the nematic
phase as well. Finally, Fig. 2(d) shows a divot.
We also compared our nematic results to a region of the

same substrate that had been patterned with an underlying
m ¼ þ1, φ ¼ π=2 topological defect—this corresponds to
an alignment pattern of concentric circles. This pattern
exhibits no significant topography, suggesting that the
source of the topography is not simply elastic relaxation
near the core—indeed, both the radial and concentric circle
patterns have the same total 2D elastic energy density (in
the single elastic constant approximation) at the defect core.
We examine the three major terms of the free energy:

surface tension, elastic forces, and anchoring. In both the
radial and concentric circle geometries, surface tension at
the free surface tends to minimize curvature, promoting a
uniformly flat topography [Fig. 3(a)]. Next are elastic
forces, with the director constrained (nearly) normal to
the free surface. Focusing on the radial easy axis pattern,
very close to r ¼ 0 the director must melt, become
biaxial [19–21] when tightly confined in specific geo-
metries [22–24], a condition that is not met in our experi-
ments, or become vertically aligned at the substrate. The
latter scenario is effectively the common escaped radial
configuration [25,26] and is consistent with our setup. For
the latter case the far-field region beyond r > l finds its
polar orientation θ undergoing a bend or splay distortion
along the z axis to meet the hybrid-alignment boundary
conditions. The total energy of this far-field region can be
reduced by increasing the local film thickness to spread the
distortion over a larger z distance. With a constant volume
constraint, material must be transported away from the core
region near r ¼ 0, thus promoting a divot for both
configurations [Figs. 2(d) and 3(b)]. We note that these
nematic divots derive from very different physics than those
in the SmA phase [27,28].

FIG. 2. (a) Domelike behavior for a film of thickness
d ¼ 75 nm. (b) Conelike topography for d ¼ 660 nm film on
the same patterned substrate. (c) Profiles of slices through the
core of the same physical sample at several different thicknesses.
The extent of the two inner vertical lines corresponds to the
2l ¼ 70 μm radially patterned diameter, and the two outer
vertical lines to the full 85 μm patterned square. (d) Image of
a divot for d ¼ 1030 nm film.
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The third term, anchoring, is the source of the hill-like
behavior [Fig. 3(c)] for the radial pattern. Because of the
hybrid boundary conditions, there is a director torque at the
surfaces, and the LC must be pretilted slightly, by angle
θfðrÞ, from the normal at the free surface (vanishing as
r → 0). This pretilt anchoring cost can be mitigated by a
deformation of the free surface to form a hill [Fig. 3(c)] or a
divot [Fig. 3(d)], depending on the sense of pretilt at the
substrate. Figure 3(e) shows the case of a concentric circle
easy axis pattern, with a twist distortion along an axis
passing through r ¼ 0 at the substrate. Elastic energy
relaxation requires that ∇h be azimuthal, although owing
to azimuthal symmetry ∇h ¼ 0. Thus free-surface anchor-
ing promotes neither hill nor divot, leaving elasticity as the
main driving force for the topography. That the topography
is negligible for m ¼ þ1, φ ¼ π=2 [Fig. 3(e)] suggests that
the elastic forces are weak.
The relative trade-off among the three energy contribu-

tions determines the magnitude of h and its sign. We
observed the pretilt phenomenon experimentally, wherein
heating and cooling through TNI randomly nucleates the
sense of pretilt—this is due to the bidirectional scribing—
thereby interchanging hill and divot. We note that scribing
the patterns unidirectionally predisposes one sense of
substrate pretilt, with hills for radially inward scribing
and divots for outward scribing. Thus, the shape of the
topography depends on force balance, with anchoring
typically dominating. This, in turn, depends on the LC’s
materials parameters, the scribing pattern, the scribing
radius l, and the film thickness d.
We now turn to an overview of the modeling with a

patterned defect at the substrate; a more extensive expo-
sition will be published elsewhere. The free energy of the
system consists of the usual surface tension, elastic, and
anchoring contributions,

F ¼ 1

2

Z
Ω
fðn;∇nÞdV þ

Z
∂Ω

�
σ −W

2
ðn:neÞ2

�
dA; ð1Þ

where σ is the surface tension, the elastic contribution is
f¼K11ð∇ ·nÞ2þK22ðn ·∇×nÞ2þK33jn×∇×nj2, K11 ¼
K22 ¼ K33 ¼ K are the splay, twist, and bend elastic
constants in the equal constant approximation, and W is
the anchoring strength coefficient. The second integral is
taken over the free surface with the director n fixed at the
lower substrate.
Two length scales, ζ ¼ K=σ and ξ ¼ K=W, characterize

the relative influence of the three terms. Far above the
N-SmA transition, approximate values for these are
ζ ∼ 0.4 ≪ ξ≲ 100 nm; hence the upper surface remains
flat and the director adopts the configuration in Fig. 3(a).
Note that the director deviates slightly from vertical above
the pattern due to the finite anchoring strength. As the
temperature cools towards the N-SmA transition, two
effects occur: First, K22 and K33 diverge [29]; second,
the SmA phase grows inward from the substrate [30],
enhancing surface order and, importantly, increasing the
surface anchoring W [31,32]. This tends to enhance h for
both hills and divots on nearing TNA.
Now suppose the free interface can vary. The surface

tension term in Eq. (1) resists deformations [Fig. 3(a)].
Elastic stresses tend to push the interface upward to
mitigate dθ=dz: As described above, this leaves a divot
near r ¼ 0, where dθ=dz ¼ 0 [Fig. 3(b)]. The anchoring
term requires careful consideration: It is typically thought
to promote alignment of the director with respect to a fixed
easy axis ne defined relative to the surface normal. Here we
reverse the causality and investigate how a spatially
changing n can induce variations in ne and hence the
topography of the surface.
To do so, the free surface is parametrized in dimension-

less (scaled by d) cylindrical coordinates ðρ; u; ZÞ as
X ¼ fρ; u; HðρÞg and, hence, the surface normal is
ŝ¼f−H0ðρÞ;0;1g=½1þH0ðρÞ2�. Here, H¼h=d, L¼l=d,
and the prime denotes ∂=∂R. Similarly, the director
at the surface is parametrized to lie at a constant azimuthal
angle ϕ to the radial direction, n≡ fnρ; nu; nzg ¼
fsin θðρÞ cosϕ; sin θðρÞ sinϕ; cos θðρÞg. Hence, the
anchoring term in Eq. (1) becomes

Fw¼−πWd
Z

L

0

½cosθðρÞ−H0ðρÞcosϕsinθðρÞ�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH0ðρÞ2

p ρdρ; ð2Þ

revealing a coupling between topography H0ðρÞ and
orientation θðρÞ. Notice that the coupling vanishes if
θ ¼ 0, where the director is vertical, and similarly if
ϕ ¼ π=2, where the director is azimuthal; here a spatially
varying director does not induce topography.
Experimentally, H ≪ 1, suggesting a perturbative

approach. We therefore series expand about a solution
where the director is nearly vertical at the free surface and
fixed by elasticity, θ ≈ αθ1ðρÞ, and the interface is nearly
flat, HðρÞ ≈ αH1, where α is an expansion parameter. We
include the surface tension,

FIG. 3. Illustration visualizing the resulting topography from
the energy contributions of (a) surface tension promotes flatness,
(b) elastic forces promote divots, (c),(d) underlying splay in the
weak-anchoring regime for both senses of director escape, the
first promoting hills and the second divots, and (e) underlying
twist in the weak-anchoring regime promoting neither hills nor
divots.
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Fσ ¼ 2πσd
Z

L

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH0ðρÞ2

q
ρdρ;

and a volume constraint 2πλd
R
L
0 HðρÞρdρ, but neglect the

elastic stress, as this has leading order α3 while the other
terms are of order α2. With these considerations, the
linearized Euler-Lagrange equation is obtained,

ð1þ wÞðH0
1 þ ρH00

1Þ þ 2w cosϕðθ1 þ ρθ01Þ þ λρ ¼ 0; ð3Þ

where w ¼ W=σ. A suitable ansatz for θ1 is
θ1 ¼ ðπ=2Þ tanhðπρ=2Þ=ð1þ ΓÞ, where Γ ¼ Wd=K.
Inserting this into Eq. (3), we obtain a solution:

HðRÞ¼H0− λρ2

2πð1þwÞ−
2w cosϕ log½coshðπρ=2Þ�

ð1þwÞð1þΓÞ : ð4Þ

The constants λ and H0 are determined by imposing the
boundary condition H0ðLÞ ¼ 0 and volume constraintR
L
0 HðρÞρdρ ¼ 0. From the solution [Eq. (4)], the magni-
tude of the dimensionless topography ΔH ≡HðLÞ −Hð0Þ
may be estimated,

ΔH ¼ w cosϕf4 log½coshðπL=2Þ� − πL tanhðπL=2Þg
2ð1þ wÞð1þ ΓÞ ;

and solutions are plotted in Fig. 4(a) for different L. The
profile becomes increasingly conical with increasing L.
Thus, we have the following takeaways: (i) our analytic
model articulates the mechanism(s) for the topography,
(ii) it predicts that a topography is observed only for the
case of a radial surface pattern, consistent with experiment,
and (iii) it predicts that the topography scales with confine-
ment distance L, also consistent with observation.
We also perform numerical simulations relaxing the

strong assumptions of the above model. The full free
energy [Eq. (1)] with three elastic constants is minimized
subject to a volume constraint both with respect to the
director and the shape of the domain using one of the
authors MORPHO code of DeBenedictis and Atherton [33];
an initial 2D rectangular domain is used and all quantities
are represented using linear interpolation on a triangular
finite element mesh. The height is fixed at ρ ¼ L on the
right-hand boundary. A typical height profile is displayed
in Fig. 4(b) and closely resembles those from the analytical
model despite the much less restrictive assumptions of the
calculation. Additionally, we display the normal compo-
nent of the generalized force ð∂F=∂xiÞ · ŝ on the ith
boundary vertex due to the respective terms [Fig. 4(c)].
To summarize, we have shown experimentally and

theoretically that the topography of a nematic LC, i.e.,
an orientable Newtonian fluid, at an air interface can be
determined by the easy axis pattern of the underlying
substrate. The interplay of surface tension, elasticity,
and especially anchoring alone determines the shape of

the free-surface topography, without the need of a singular
defect running from the substrate to the air interface.

We thank Professor Robin Selinger, Professor Nigel
Mottram, Professor Emmanuelle Lacaze, and Professor
Samo Kralj for useful discussions. Support came from the
NSF under Grants No. DMR1901797 (A. J. F. and C. R.)
and No. DMR1654283 (T. J. A.).

*Present address: Sandia National Laboratory, Albuquerque,
New Mexico 87123, USA.

[1] M. P. Mahajan, M. Tsige, P. L. Taylor, and C. Rosenblatt,
Phys. Fluids 11, 491 (1999).

[2] F. C. MacKintosh and T. C. Lubensky, Phys. Rev. Lett. 67,
1169 (1991).

[3] Y. K. Kim, S. V. Shiyanovskii, and O. D. Lavrentovich. J.
Phys. Condens. Matter 25, 404202 (2013).

[4] Z. Dogic and S. Fraden, Phil. Trans. R. Soc. A 359, 997
(2001).

[5] V. Jamali, N. Behabtu, B. Senyuk, J. A. Lee, I. I. Smalyukh,
P. van der Schoot, and M. Pasquali, Phys. Rev. E 91, 042507
(2015).

[6] A. DeBenedictis and T. J. Atherton, Liq. Cryst. 43, 2352
(2016).

[7] P. G. De Gennes, Solid State Commun. 8, 213 (1970).
[8] A. Suh, M.-J. Gim, D. Beller, and D. K. Yoon, Soft Matter

31, 196 (2019).
[9] R. B. Meyer, Mol. Cryst. Liq. Cryst. 16, 355 (1972).

FIG. 4. a) Illustration of flat interface solution (inset) and
analytical height profile for different L; w ¼ 0.1, Γ ¼ 10, ϕ ¼ 0.
Asymptotic solution for L → ∞ is shown in red for comparison.
(b) Numerically minimized height profile with finite elements.
(c) Generalized forces on the boundary vertices due to different
terms in the elastic energy.

PHYSICAL REVIEW LETTERS 126, 057803 (2021)

057803-4

https://doi.org/10.1063/1.869871
https://doi.org/10.1103/PhysRevLett.67.1169
https://doi.org/10.1103/PhysRevLett.67.1169
https://doi.org/10.1088/0953-8984/25/40/404202
https://doi.org/10.1088/0953-8984/25/40/404202
https://doi.org/10.1098/rsta.2000.0814
https://doi.org/10.1098/rsta.2000.0814
https://doi.org/10.1103/PhysRevE.91.042507
https://doi.org/10.1103/PhysRevE.91.042507
https://doi.org/10.1080/02678292.2016.1209699
https://doi.org/10.1080/02678292.2016.1209699
https://doi.org/10.1016/0038-1098(70)90084-0
https://doi.org/10.1080/15421407208082796


[10] N. Madhusudana and K. Sumathy, Mol. Cryst. Liq. Cryst.
92, 193 (1983).

[11] E. G. Virga and M. Schadt, Jpn. J. Appl. Phys. 39, 6637
(2000).

[12] E. G. Virga, Phil. Trans. R. Soc. A 355, 2035 (1997).
[13] R. Meister, H. Dumoulin, M.-A. Hallé, and P. Pieranski, J.
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