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We present a tube model for the Brownian dynamics of associating polymers in extensional flow. In
linear response, the model confirms the analytical predictions for the sticky diffusivity by Leibler-
Rubinstein-Colby theory. Although a single-mode Doi-Edwards-Marrucci-Grizzuti approximation accu-
rately describes the transient stretching of the polymers above a “sticky” Weissenberg number (product of
the strain rate with the sticky-Rouse time), the preaveraged model fails to capture a remarkable
development of a power law distribution of stretch in steady-state extensional flow: while the mean
stretch is finite, the fluctuations in stretch may diverge. We present an analytical model that shows how
strong stochastic forcing drives the long tail of the distribution, gives rise to rare events of reaching a
threshold stretch, and constitutes a framework within which nucleation rates of flow-induced crystallization
may be understood in systems of associating polymers under flow. The model also exemplifies a wide class
of driven systems possessing strong, and scaling, fluctuations.
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The natural or artificial production of high-performance
polymeric materials requires precise control over flow-
induced crystallization. This phenomenon involves in turn
a highly nontrivial interdependence between the molecular
level of bond-orientation-dependent nucleation, and the
macroscopic level, where the temperature-dependent rheo-
logy generates stretch of entire chain segments [1–5].
Remarkably, nature has found a way to control robustly
the flow-induced self-assembly of silk from an intrinsically
disordered state (a solution of random-walk polymers) prior
to forming high-performance fibers under flow at ambient
conditions [6–14]. Key to achieving the final properties is
that silk is processed in semidilute aqueous conditions [10],
where nucleation can be induced through the stretch-
induced disruption of the solvation layer [15]. How
sufficient polymer stretch can be achieved in a limited
time under modest flow conditions [9,16] has so far
remained unexplained. An important clue has been the
observation of strain hardening [9,16], which in B. mori
silk [16] turned out to be triggered by a small number of
calcium bridges [14,17] that act as “sticky” reversible
intermolecular crosslinks akin to those in synthetic “sticky
polymers” [18–26]. For this class of molecules, a molecular
understanding of the nonlinear rheology and crystallization
of sticky polymers has so far relied on computationally
expensive (albeit coarse grained to some degree) molecular
dynamics simulations [5,27–32]. Simpler molecular mod-
els coarse grained at the level of entanglements, but able to
capture the vital slow processes, remain absent.
In the present work, we address this need by following

the central idea by de Gennes and Edwards of replacing the
many-chain problem with a single chain in a tubelike
confinement imposed by its environment of entanglements

[33,34], and solve the Brownian dynamics of the chain in
1D [35]. This approach is simple yet powerful, and has led
to the development of widely applied finite-element solvers
[36–39], a physical explanation for the (apparent) 3.4
power dependence of the relaxation time of polymer melts
on the molecular weight [40], and a comprehensive under-
standing of the rich nonlinear rheology of (bimodal)
polymer blends [41,42]. In the spirit of other theory and
modeling work on associating polymers [38], in this Letter
we add a description for the stochastic attachment and
detachment of associating monomers to the tubular envi-
ronment developed for full nonlinear flows. The model
shares some structural similarities with early “transient
network” approaches to polymer melt and solution rheol-
ogy [43], also demonstrating a hitherto unrecognized
feature of those models.
The starting point of our contribution is to consider a

chain consisting of N Kuhn segments with length b,
and Ze entanglements [hence, with tube diameter
a ¼ bðN=ZeÞ1=2]. The configuration of the chain is given
by the spatial coordinates Ri of monomers i ¼ 1;…; N
along the curvilinear direction along the tube, which evolve
with time according to the Langevin equation [35,40,41]

ζ
∂Ri

∂t ¼
�
3kBT
b2

∂2Ri

∂i2 þ fi

�
ð1 − piÞ þ _εζRi; ð1Þ

with ∂R=∂i ¼ aZe=N at i ¼ 1 and at i ¼ N, ζ the mono-
meric friction, kBT the thermal energy, and fi a stochastic
force given by the equipartition theorem

hfiðtÞi¼0; hfiðtÞfi0 ðt0Þi¼2kBTζδði0− iÞδðt0− tÞ: ð2Þ
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In the absence of stickers, this equation predicts the Rouse
diffusivity [34]

DR ¼ a2

3π2τeZe
¼ kBT

ζN
ð3Þ

and the variance of quiescent contour-length fluctuations
hjRN − R1j2i ¼ aZe=3. The strain rate _ε is in one spatial
dimension equivalent to the strain rate in the GLaMM

model [41].
To model the binding and unbinding of monomers to the

environment, we introduce a stochastic state variable piðtÞ,
which takes values of either zero or unity for each monomer
i, which represents the “open” and “closed” states of a
monomer, respectively. An open monomer i is unbound
and is free to diffuse and respond to the drag exerted by the
flow field, as well as to relax stress in adjoining segments.
If this monomer represents a sticker, it may close through
either association or bond-swapping events [44,45].
The effective closing rate ki;close sets the probability
1 − expð−ki;closeΔtÞ ¼ ki;closeΔtþOðΔt2Þ of closing after
a time interval Δt for small Δt. In every time step of our
simulations a random number r ∈ ½0; 1� is drawn and the
sticker is closed if r < ki;closeΔt ≪ 1 [37] and is now
kinetically trapped by its environment and is unable to
diffuse or to respond to local stress in the polymer. Hence,
the closed sticker advects with the background flow. The
sticker may reopen according to the same recipe as above,
but now with an opening rate ki;open.
In principle, for copolymers or polymers with intra-

molecular (secondary) structures, each monomer can have
different opening and closing rates. Here, we consider
polymers with N Kuhn segments of which Zs ≪ N are
chemically identical stickers. The nonsticky segments are
always open, while the stickers may switch between open
and closed states with rates kclose and kopen. The opening
rate is approximately constant if the force within the chain
does not significantly decrease the activation energy for
sticker dissociation. For instance, for silk the activation
barrier is 8kBT ≈ 24 pNnm [14] and instantaneous bond
dissociation over 0.1 nm requires approximately a force of
240 pN. To produce this force f, chain alignment alone is
not enough (the tube model gives an entanglement-
generated chain tension of 3kBT=a) while by Gaussian
stretching and disentangling [46]

f ¼ 3kBTðRs − Rs;0Þ=R2
s;0; ð4Þ

it would be required to stretch the quiescent distance
between stickers Rs;0 ≈ 9 nm [47] to Rs ≈ 1800 nm (using
the sticker rather than the entanglement strand tacitly
assumes Zs ≳ Ze, and if entanglements persist at these
extreme stretches the critical stretch for sticker detachment
is reduced by

ffiffiffiffiffi
Ze

p
). On the other hand, full extension

of the substrand between stickers is already achieved at

Rs ≈ 200 nm [48]: in practice, therefore, it seems likely the
destabilization of the stickers by the chain tension occurs,
for silk, in the same regime where finite-extensibility
effects emerge [49]. By approximating kopen as a constant,
it can be related to the rheological sticker lifetime as
τs ¼ k−1open [14,19,26,28–31], and the closing rate is given
by kclose ¼ kopenp=ð1 − pÞ, with p the time- or ensemble-
averaged fraction of closed stickers. Hence, we will treat p
and τs as free model parameters [19].
We have benchmarked our model in the absence of flow

using the Likhtman-McLeish model for linear nonsticky
polymers [35] (this linear rheological response is not shown
here) and using the sticky-Rouse (SR) diffusivity DSR ¼
DSRðZe; τe; Zs; τs; pÞ as calculated by Leibler et al. [19]
(see the inset of Fig. 1). For the nonlinear dynamics of
sticky polymers, so far no comparisons between analytical
predictions with simulations or experiments have been
reported. The first strategy to address this is to evaluate how
well a Doi-Edwards-Marrucci-Grizzuti (DEMG)-type sin-
gle-mode approximation performs [49], with chain friction
renormalized by averaging over the stochastic sticker
dynamics:

dλ
dt

¼ _ελþ 1

τSR
ð1 − λÞ; ð5Þ

where the stretch ratio λ≡ ðRN − R1Þ=Ze is presumed to be
uniform over the backbone of the chain. The extension rate

FIG. 1. Comparison between the stretch ratio λ of a sticky
polymer (Ze ¼ Zs ¼ 10, τs ¼ 104τe, p ¼ 0.95, Zs ¼ 10) against
time t in units of the sticky Rouse time τSR at a range of flow rates
from _ε ¼ 0.056τ−1SR to 22.3τ−1SR in logarithmic steps. The sticky
Rouse time is τSR ¼ ½DR=DSR�τR with DR the bare Rouse
diffusivity, τR ¼ τeZ2

e the bare Rouse time, and DSR the sticky
diffusivity (see inset). In the main panel, the symbols are obtained
by averaging over five Brownian dynamics simulations with
different random number seeds; the lines represent the single-
mode model in Eq. (5). The inset shows consistence of the
simulated sticky-Rouse diffusivity (symbols; averaged over 25
random number seeds) with the sticky-reptation model (lines) of
Leibler et al. [19].
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is proportional to the stretch ratio itself. The retraction
rate is determined by (1 − λ) (in the absence of flow,
λ ¼ 1 at steady state) and by the sticky-Rouse time
τSR ≡ ½DR=DSR�τS. In the main graph of Fig. 1, we present
a comparison between this simple approximation and our
simulations (the approximations inherent in the DEMG
require that the simulation time be divided by a factor 1.2 to
result in the close agreement shown). This confirms that the
intuitive “sticky Weissenberg number” for the stretch
transition is Wi ¼ _ετSR. For Wi > 1 an exponential run-
away stretch emerges as expected. In contrast to nonsticky
polymers, however, we will argue that the stress and
fluctuation in stretch may diverge below this stretch
transition when the preaveraging approximation inherent
in DEMG is avoided.
While nonsticky polymers in steady state show a

Gaussian stretch distribution with a width that is deter-
mined by the (effective) number of entanglements, we have
observed rather large stretch fluctuations for the sticky
polymer at extension rates of the order of, but below, the
critical value. Indeed, the symbols in Fig. 1 are averaged
over five simulations for a chain with ten stickers which are
on average closed a fraction p ¼ 0.95 of time. For
simulations with p < 0.9 these fluctuations become much
larger and difficult to distinguish graphically. Indeed, while
the mean stretch is finite, the fluctuations in stretch diverge
above a certain flow rate below the stretch transition.
For three of the flow rates shown in Fig. 1 we have

plotted the stretch distribution PðλÞ in Fig. 2. For small

flow rates, the stretch distribution is Gaussian, lnPðλÞ ∝
ð1 − λÞ2 (solid curves), as in the quiescent state. However,
for increased flow rates deviations emerge in the high-λ tail
of the distribution. Importantly, the polymer stretch may
resemble the mean stretch for long times compared to the
sticky-Rouse time, and only in “rare events” the stickers
may remain closed sufficiently long for the stretch to reach
deep into the tail of the distribution (see inset).
In the following, we will explore the problem analyti-

cally using a “sticky dumbbell model” to explore and
clarify the underlying causes of the power law tail in the
stretch distribution, and explore how it can be tuned by the
flow rate. This minimal model that captures the essential
physics is equivalent to a single polymer strand either
attached to the bulk deformation at both ends (the closed
state) or free to relax (the open state). The rate by which the
polymer switches between the two states is given by the
usual opening and closing rates. We can now address the
development of stretch under extensional flow through a
pair of coupled partial differential equations for the time-
dependent stretch distributions Poðt; λÞ and Pcðt; λÞ for
each state using the master equation

∂Pc

∂t ¼ −
∂
∂λ ½Pc _ελ� − kopenPc − kclosePo;

∂Po

∂t ¼ −
∂
∂λ

�
Po

�
_ελþ 1 − λ

τR

��
þ kopenPc − kclosePo: ð6Þ

Note that this evolution equation invokes a single-mode
approximation and ignores thermal fluctuations: the stretch
distribution emerges from the coupling between a closed
state in which the polymer is stretched and the open state in
which it can retract. Under strong flow conditions, the
effective driving noise is completely dominated by the
stochastic state switching, with thermal noise negligible.
We calculate the steady-state stretch distribution at

strong stretch by setting the left-hand side of Eq. (6) to
zero and taking λ ≫ 1. The result can be solved analytically
since in these conditions the differential system becomes
homogeneous. We therefore find the power law relation

PðλÞ ∝ λ−ν; ð7Þ

with the exponent given in terms of the three dimensionless
parameters of the system, p, _ετR, τR=τs by

ν ¼ 1þ 1

ð1 − _ετRÞ
p

ð1 − pÞ
τR
τs

−
1

_ετs
: ð8Þ

We compare this power law to our sticky dumbbell
simulations in Fig. 3. In passing, we note that this model
also provides an example of one of a family of driven,
stochastic, systems together referred to as “multifractals”
[50] in which a divergent and scaling structure of fluctua-
tions arises, not just at a single critical point, but within a

FIG. 2. The steady-state probability distribution PðλÞ is plotted
against the stretch ratio λ. The symbols are obtained from the
steady-state simulations of Fig. 1 at the flow rates (_ετSR ¼ 0.446,
0.668, and 0.780); the curves are Gaussian fits. For an increasing
flow rate, the high-stretch tail is no longer Gaussian but becomes
a power law PðλÞ ∝ λ−ν. The inset shows the stretch ratio against
time for _ετSR ¼ 0.780 and visualizes how this distribution
includes “rare events” of enormous chain stretch. For a suffi-
ciently large flow rate, ν decreases. If ν > 2, the mean value of λ
is finite (as it should in steady state); however, if also ν ≤ 3, the
fluctuations in stretch, characterized by the expectation value of
λ2, diverge.
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large region of state space, and with a universal critical
exponent replaced by a family, dependent on the degree of
forcing.
For sufficiently small flow rates, we find a reasonable

agreement between our multibead simulations and the
analytical approximation for the simple sticky dumbbell
(under these conditions, ν > 3). While the simulation for
chains with just two beads (i.e., with a single Rouse mode)
agrees well with the approximate theory, the higher Rouse
modes in the multibead chain provide an additional
relaxation mechanism for the retraction of the chain ends
alike contour-length fluctuations. Hence, the single-mode
approximation slightly overestimates the width of the
stretch distribution of a real chain (i.e., a multibead chain).
The discrepancy between the single-mode and multibead
chain becomes apparent if the flow rates are high for the
exponent ν to approach or go beyond a value 3 [this occurs
at ð1 − pÞ_ετR ≈ τR=ð2τsÞ]. This is not a coincidence: if
ν ¼ 3 the magnitude of the fluctuations diverge, hλ2i → ∞.
Although the fluctuations diverge for ν ¼ 3, the mean hλi
remains finite as long as ν ≤ 2 [the equality holds approx-
imately when ð1 − pÞ_ετR ≈ τR=τs]. For even larger flow
rates, i.e., for ν ≤ 1 [at ð1 − pÞ_ετs ¼ 1] the stretch dis-
tribution can no longer be normalized and true runaway
stretch emerges. These various regimes are displayed in
Fig. 4 in terms of the dimensionless parameters of the
system. Note that the stress is σ ∝ ð1 − λÞ2 and the tail of
the stress distribution is PðσÞ ∝ λ−ν=2: the mean stress
diverges for ν ≤ 4 and its variance diverges for ν ≤ 6.

The single-mode dumbbell model clarifies the route
through which the divergent fluctuations arise. Crucially,
when a stretched strand is freed from the network, it may
not relax entirely before reattachment (this effect is ignored
in classical treatments of transient network models, which
in consequence overlook the strong stochastic fluctuations
they physically imply). Such continuous interchange
between convecting and relaxing strands, together with
the occurrence of longer-than-average attachment times for
some segments, allow the exploration of very large chain
stretches in steady state.
To illustrate the potential consequences of this effect, we

consider nucleation rates in steady-state extensional flow,
assuming that polymer crystal phase may nucleate around
chains beyond a critical stretch ratio λ� [1]. Assuming that
the chain is relaxed prior to sticker closing at time t ¼ 0, its
stretch ratio develops as λðtÞ ¼ expð_εtÞ until it opens at a
time τopen. This time is drawn from the probability
distribution pðτopenÞ ¼ τ−1s expð−τopen=τsÞ, so the proba-
bility that the critical stretch is reached is p� ¼ λ−1=_ετs� . The
probability that λ� is not reached after n attempts is
ð1 − p�Þn, and therefore the expected number of attempts
needed is

hni ¼
P∞

n¼1 nð1 − p�ÞnP∞
n¼1ð1 − p�Þn

¼ λ1=ð_ετsÞ� : ð9Þ

An attempt occurs, on average, after time intervals
1=kopen þ 1=kclose ¼ τs=p. If the number density of chains
is ρ, then combining these results gives an extension-rate-

dependent nucleation rate per volume J ¼ ½ρp=τs�λ−1=ð_ετsÞ� .
We expect that the form

FIG. 3. The power law stretch distribution, PðλÞ ∝ λ−ν for large
λ, observed in Fig. 2 is replicated analytically in a sticky
dumbbell model for a sticky polymer (Ze ¼ 10, p ¼ 0.9,
τs ¼ 1000τe), which has two stickers near the end of the chain
that are simultaneously either open or closed (lines). The dashed
curve is the Gaussian stretch distribution under quiescent con-
ditions. In linear steps, the flow rate is increased up to
_ετR ¼ 0.05. The symbols are obtained in simulations with 2,
6, 12, and 36 beads (from red to light blue). For small flow rates,
where ν < 3, the simulated power law tails of PðλÞ (symbols) are
in agreement with Eq. (8). The inset shows the transient behavior
of the simulation with _ετR ¼ 0.05.

FIG. 4. State diagram of a sticky dumbbell. For a short sticker
lifetime, polymer stretching takes place if the Weissenberg
number ð1 − pÞ_ετR is larger than unity. p is the time-averaged
fraction of closed stickers and τR is the bare Rouse time. For a
finite sticker lifetime, the mean and the variance of the stress σ
and the stretch λ diverge in different regimes. The curves are
given by Eq. (8) for ν ¼ 2, 3, 4, 6 as discussed in the main text.
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ln J ¼ A −
B
_ετs

; ð10Þ

with A and B flow-independent coefficients, carries over to
the multisticker chain provided that the substrand between
stickers is sufficiently long and τs can be treated as a
constant [see our discussion on Eq. (4)]. This constitutes a
first prediction for the rate of flow-induced crystallization
of associating polymers in steady-state extensional flow,
which along with the prediction of strong stretch fluctua-
tions will help the interpretation of the (noisy) nonlinear
rheology of silk [9,16], e.g., using confocal microscopy
[51] and controlled variations of ionic content in the
solution [52], and thereby aid the development of its
synthetic counterparts [15].
In conclusion, we have numerically solved the 1D

stochastic Langevin equation of an aligned entangled sticky
polymer in an effective medium and in extensional flow.
We show that this computationally inexpensive simulation
method captures the combined polymer physics of repta-
tion, contour-length-fluctuations and response in exten-
sional flow, associating stickers. Crucially, it does not
preaverage any fluctuations in chain stretch, and predicts
that in steady-state flow a small fraction of chains (rather
than all of them) stretches to a large extent: this seems a
promising energy-efficient strategy to trigger the flow-
induced crystallization of polymers. For simulations that
can be quantitatively compared to experiment, it will be
necessary to include a description for finite chain exten-
sibility, and to account for the effect of chain stretch
reducing the sticker binding energy and lifetime, although
we expect the power law tails in the stretch distribution
found here to survive with corresponding cutoffs.
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