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Qubits based on Majorana zero modes are a promising path towards topological quantum computing.
Such qubits, though, are susceptible to quasiparticle poisoning which does not have to be small by
topological argument. We study the main sources of the quasiparticle poisoning relevant for realistic
devices—nonequilibrium above-gap quasiparticles and equilibrium localized subgap states. Depending on
the parameters of the system and the architecture of the qubit either of these sources can dominate the qubit
decoherence. However, we find in contrast to naive estimates that in moderately disordered, floating
Majorana islands the quasiparticle poisoning can have timescales exceeding seconds.
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Majorana zero modes (MZMs) provide a basis for
topologically protected qubits [1–3]. The topological pro-
tection means that dephasing of the MZM-based qubit
(Majorana qubit) is exponentially small in the separation
of theMZMs in space and in the energy gap of the separating
region. Both of these quantities can be controlled in experi-
ments which leads to the potential of long dephasing times.
Majorana qubits encode information in the joint parity of

MZM pairs. Dephasing of a Majorana qubit can thus only
happen via incoherent exchange of parity between the
MZMs [4] or via processes of uncontrolled exchange of
quasiparticles (QPs) between the Majorana subspace and
other fermionic modes [5–7]. The latter is called quasipar-
ticle poisoning (QPP) of the Majorana qubit. QPs may have
different origins—they may be inside the Majorana qubit at
above-gap energies excited by temperature or external
perturbations, they may come from the environment, or
they may be located in nontopological subgap states.
Exponential suppression of QPP in parameters of the system
can be shown for a system decoupled from gapless leads
under the assumptions of thermal equilibrium and a spectral
gap in the system [8,9]. In the present work we analyze how
breaking these assumptions in real systems affects QPP.
Nonequilibrium QPs are present in any realistic physical

system and have been explored extensively in the context
of superconducting qubits [10–19] and dedicated devices
[20–24]. In a conventional superconductor a single QP
cannot relax to the condensate consisting of Cooper pairs.
Once QPs are created by an external perturbation the only
way to get rid of them is to pair them up. This process
becomes slow for low densities of the QPs [10,25].
Therefore, even for small rates of QP creation, super-
conductors typically have a nonequilibrium density of QPs
that significantly exceeds the expected thermal occupation.
The effects of nonequilibrium QPs on the Majorana

qubits can be described by relaxation events of the QPs into

the MZMs. The QPs are described by the density nQP.
In order to determine the lifetime (or dephasing time) of
the qubit we have to determine the relaxation rate into
MZMs given a certain nQP and then find an expression
for typical QP densities. The latter can be obtained from
steady state solutions of a model with a certain rate
of exciting higher-energy QPs, subsequent relaxation,
and recombination.
The potential danger of QPP for Majorana qubits is

widely acknowledged in the literature [4–7,26] and the
timescales for the poisoning influence the design of a
Majorana-based quantum computer [27]. However, there
exist few quantitative estimates for the corresponding
decoherence times. Moreover, the existing estimates
[4,6] rely on values for nQP that are typical for conventional
superconductors and do not take into account how the
presence of the MZM itself will change nQP. Here we show
that MZMs act as efficient QP traps which strongly
renormalizes nQP.
Finally, the effect of disorder and subgap states is mainly

discussed in the literature in terms of the effect on the
topological transport gap and transition from the topo-
logical to the conventional phase due to disorder [28–31].
The disorder, however, suppresses the spectral gap faster
than the transport gap by creating localized states. It thus
causes the presence of subgap states well before the
topological transition. Such subgap states present a reser-
voir where parity may leak from the MZMs, thus causing
decoherence from equilibrium QPP.
The aim of the present Letter is to provide a self-

consistent estimate of QPP taking into account the
peculiarities of mesoscopic topological superconductors
including the finite volume of the superconductor and
equilibrium QPP due to the presence of subgap states.
Poisoning due to nonequilibrium QPs.—We start by

considering nonequilibrium QPP resulting from relaxation
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of above-gap nonequilibrium QPs into one of the computa-
tional Majoranas with a rate Γγ . See Fig. 1 for a schematic
representation of the relevant processes. The nonequili-
brium QP density in superconductors can result from a
steady rate of QP creation Γcre ¼ 2γbrNCP via breaking of
some of the NCP Cooper pairs. The exact nature of the
Cooper pair breaking process may be due to stray radiation,
cosmic rays, etc., but is unimportant for our model. High
energy QPs relax quickly to the gap edge but only slowly
recombine into Cooper pairs by annihilating with another
QP with a rate Γrec. The latter can be estimated by
Γrec ¼ γ̃0n2QPV=nCP, see, e.g., Ref. [25], where γ̃−10 is a
characteristic timescale of the electron-phonon coupling, V
is the total volume of the island, and nCP is the density of
Cooper pairs. The factor n−1CP also describes the average
volume of a QP in the energy range of interest, as
nCP ¼ DðEFÞΔ in terms of the density of states DðEFÞ
and the gap Δ of the superconductor. Crucially, Γrec ∝ n2QP
becomes slow for small densities which makes relaxation
processes into MZMs that become available in topological
superconductors highly relevant.
Following the literature [13,15,16,32], we describe the

behavior of above-gap QPs by diffusive dynamics of an
energy-independent density nQP of QPs close to the gap
edge. Neglecting the energy dependence is based on the
observation that the QP relaxation rate Γrel ≳ ð10 nsÞ−1
[32] is typically by far the fastest of the rates introduced in
Fig. 1 and can thus be eliminated together with the above-
gap energy dependence. Within this model we consider
MZMs located at positions x ¼ xi and take into account the
remaining creation and relaxation processes defined above.
The diffusion equation reads

_nQP ¼ 2γbrnCP þD∇2nQP

−
X
i

γ0nQPfðx − xiÞ − γ̃0n2QP=nCP: ð1Þ

Here, γbr is the rate of breaking Cooper pairs, D is the
diffusion constant of the above-gap QPs, γ−10 a character-
istic timescale for QP relaxation into a MZM, and fðxÞ
describes the local extent of a MZM located around x ¼ 0.
While in general fðxÞ depends nontrivially on the overlap
of MZM and QP wave functions [4], in the limit of a
weakly changing QP density [33] relative to the topological
coherence length we can write fðxÞ ≈ VMZMδðxÞ, where
VMZM ¼ ðR dVjψMZMjÞ2 is a measure of the volume of the
MZM with wave function ψMZM. In an effectively one-
dimensional system Vð1dÞ

MZM ¼ ξ.
Note that Eq. (1) neglects the hybrid character of typical

realizations of topological superconductors as semiconduc-
tor-superconductor heterostructures. Although diffusion in
the semiconductor can be faster than in the superconductor,
the much larger density of states in the superconductor
leads to Eq. (1) being an excellent approximation when
using the diffusion constant of QPs in the superconductor
as long as the regime of very weak superconductor-
semiconductor coupling is avoided. For a more detailed
discussion see the Supplemental Material [34].
We first review the argument giving the nonequilibrium

QP density in an isolated conventional superconductor. To
this end we set γ0 ¼ 0. The steady state solution of Eq. (1)
then yields a constant density nQPðxÞ ¼ nSC, with

nSC ¼
ffiffiffiffiffiffiffiffi
2γbr
γ̃0

s
nCP ð2Þ

such that ΓcreðnSCÞ ¼ ΓrecðnSCÞ.
For the remainder of the Letter we will use parameters

for an Al-proximitized nanowire of total volume VSC ¼
10 μm× 200 nm × 10 nm ¼ 2 × 10−2 μm3 as such a sys-
tem is the closest to practical applications due to substantial
charging energy [3]. We summarize the parameters in
Table I. All the estimates are straightforward to perform
for other superconductors and host systems [39–41].
In the Al-based system ncp ¼ DðEFÞΔ ≈ 3 × 106=μm3.
Using γ−10 ; γ̃−10 ∼ 50 ns [4] and nSC ¼ 0.01;…; 10 μm−3

[10,14,18,19,21,42] we find γ−1br ∼ 104;…; 1010 s. Note
that this gives quite small total rates of QP creation even
when multiplying by the number of Cooper pairs in a
typical sample of size VSC. Using these numbers we
find Γ−1

cre ∼ 0.1 s;…; 1 day.

FIG. 1. Schematic representation of the relevant quasiparticle
processes in a topological superconductor. Above-gap QPs are
created at a rate Γcre which leads to a density of nonequilibrium
QPs, which quickly relaxes to an energy window close to the gap
edge via the rate Γrel. After relaxing to the gap edge, the
quasiparticles can relax further either by pairwise recombination
into Cooper pairs at a rate Γrec or by relaxing into MZMs at rate
Γγ . Another source of quasiparticle poisoning can be due
the presence of low energy subgap states that may be present
in the topological superconductor. Leakage of the parity from the
MZMs into such state is described by the rate Γsub.

TABLE I. Parameter values used in our estimations.

Parameter Value Reference

Volume of superconductor VSC 2 × 10−2 μm3 [3]
Electron-phonon coupling γ−10 50 ns [4]
QP density in bulk SC nSC 0.01;…; 10 μm−3 [10,19]
Majorana volume VMZM 2 × 10−4 μm3 [3]
Diffusion coefficient in Al D 2 μm2 ns−1 [13]
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Note that the above estimate relies on uniformly
distributed completely delocalized QPs and thus provides
an upper bound for the creation rate. As noted, e.g., in
Ref. [25] the annihilation itself can reduce the probability
for QPs to be close enough to recombine especially if
they are localized due to disorder. This effect makes
recombination less efficient and leads to estimates with
even smaller rates Γcre that would be consistent with the
observed QP densities. Reference [25] also provided an
encouraging estimate for the QP creation rate (per volume)
due to cosmic radiation ∼10−4 s−1 μm−3 which corre-
sponds to Γ−1

cre ∼ 10 days.
Let us now consider the rate of relaxation of a density

nQP into the localized MZMs given by [4]

Γγ ¼ γ0nQPVMZM: ð3Þ

The rate Γγ is also the QP poisoning rate of the qubit. A naive
estimate of the qubit poisoning rate can be obtained by using
typical densities nSC of conventional superconductors as an
estimate of nQP in Eq. (3) [4]. As we will show below it is
crucial that the QP density is determined self-consistently
taking into account the presence of MZMs and estimates
based on the density in conventional superconductors
vastly overestimate the poisoning rate in mesoscopic
supercondcutors.
The importance of the relaxation into MZMs in

comparison to the bulk QP recombination can already be
revealed by examining for a fixed nQP the ratio of Γγ to the
rate of pairwise QP annihilation Γγ=Γrec ¼ ncpVMZM=nQPV.
Using for the estimate of the volume occupied
by the Majorana wave function VMZM ∼ 200 nm × 10 nm×
100 nm ¼ 2 × 10−4 μm3, we obtain that at densities similar
to the zero field densities of nonequilibrium QPs nQP≈nSC,
Γγ=Γrec ∼ 102;…; 105 ð1 μm3=VÞ. With typical device vol-
umes of order VSC we therefore find that the relaxation into
MZMs is by far the dominant relaxation process. The
efficient trapping of QPs by MZMs is reminiscent of
conventional traps based on superconducting vortices
[13,43–47]. Here, however, the trap is directly part of the
active area of the qubit.
The above suggests that for topological superconductors

of moderate size we can safely neglect the pair recombi-
nation in Eq. (1). This allows us to directly integrate Eq. (1).
For concreteness we consider in the following a quasi-one-
dimensional system of length L with two MZMs located at
x ¼ 0 and x ¼ L with fðxÞ ¼ ξδðxÞ, see Fig. 2. Because of
the symmetry of the system it is sufficient to focus
on the region of x ∈ ½0; L=2�. Using boundary conditions
of vanishing current ∂xnQPðxÞ ¼ 0 at x ¼ 0 [48] and
x ¼ L=2 we obtain the steady state solution of the diffusion
equation

nQPðxÞ ¼
�
1þ γ0ξ

D
x

�
nγ −

γbrnCP
D

x2 ð4Þ

with nγ ¼ nQPð0Þ ¼ γbrnCPL=γ0ξ. The expression of the
QP density at the MZM reflects the balance of the total
relaxation and creation rates.
The solution of Eq. (4) is depicted in Fig. 2 and is

characterized by a minimum in the QP density nQP ¼ nγ
close to the MZMs and a maximal density nQP ¼ nmax in
between the MZMs. We now discuss the important length
scales of the problem. From Eq. (4) one can extract the
length scale Lγ ¼ D=γ0ξ over which the density changes
only weakly. In a system of size L < Lγ the diffusion time
to explore the system is shorter than the typical relaxation
time. This leads to a homogeneous density, i.e.,
nmax=nγ ≈ 1. Using a diffusion constant typical for of Al
QPs D ¼ 2 μm2 ns−1 [13], ξ ≈ 200 nm [49,50], and γ−10 ∼
50 ns we obtain Lγ ∼ 1 mm. We thus expect that Majorana
qubits based on moderately sized islands of topological
superconductors [26,51] are in the regime of a small
constant density of QPs dominated by relaxation into
MZMs. The corresponding QP-limited decoherence times
are thus given by

Γ−1
γ;meso ¼ Γ−1

cre ∼ 0.1 s;…; 1 day: ð5Þ

While the estimate for the creation rate of QPs Γcre involves
significant uncertainties, it is reasonable to assume that
even in the presence of QPP qubit lifetimes exceeding
seconds are possible.
To obtain estimates for the case of Majorana qubits based

on bulk superconductors [52] we consider system sizes
L ≫ Lγ. Equation (4) suggests that nQPðxÞ saturates at
nmax ¼ γbrnCPL2=4D which can be understood as the
density of broken Cooper pairs (in the absence of relax-
ation) created over the time it takes a QP to explore half of
the system L2=4D. For large systems with L > LSC this
density will be cut off once it reaches nmax ¼ nSC and the
formerly neglected pair recombination processes become
relevant. Increasing the size of the system beyond LSC will
not change the density profile around the MZM but only
add a larger region of density nSC far away from the
MZM. We can therefore estimate the density nγ in the
limit of a bulk superconductor by nγðL ¼ LSCÞ which

FIG. 2. Density profile of nonequilibrium QPs in a quasi-one-
dimensional system of length Lwith MZMs located at the ends of
the system. Close to the MZMs, the density is suppressed to a
value nγ while it reaches nmax at the maximal distance from the
MZMs.
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leads to poisoning rates of Γγ;bulk ¼ 2γbrnCPLSC with
LSC ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nSCD=nCPγbr
p

. Using the estimates for γbr based

on Eq. (2) one can rewrite Γγ;bulk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ0Dn3SC=nCP

q
and

with nSC and γ̃0 as quoted above we obtain poisoning times

Γ−1
γ;bulk ∼ 0.1 μs;…; 1 ms; ð6Þ

with corresponding LSC ∼ 1;…; 100 mm. Note that while
the resulting estimated timescales Γ−1

γ;bulk are similar to
existing literature estimates using bulk superconductors
with constant densities nSC [6], this agreement is accidental
as the underlying equations describe different physics [53].
Equations (5) and (6) allow us to compare mesoscopic

and bulk superconductors on the same footing. Our results
suggests that the poisoning times of Majorana qubits based
on bulk superconductors are significantly worse than those
of isolated mesoscopic islands. While the above estimates
do not make it impossible to build Majorana qubits with
bulk superconductors, the resulting coherence times will
likely not be able to exceed those of conventional super-
conducting qubits.
Poisoning due to subgap states.—We now turn to

another type of decoherence possible in Majorana
devices—leakage of the parity from the MZM subspace
into other subgap states. This mechanism does not require
nonequilibrium QPs. For simplicity we thus focus on
equilibrium QPP due to subgap states. The concern here
is that realistic Majorana devices may be disordered or
inhomogeneous, and while the transport gap can be
observed in the widely used transport experiments the
(potentially vanishing) spectral gap is less accessible. Thus
equilibrium QPP is possible in the topological phase if
there are enough subgap states inside the wire that are close
enough in position to the MZMs. The equilibrium rate of a
jump to a subgap state is

Γ ¼ ωa exp

�
−
2x
ξ
−

δE
kBT

�
: ð7Þ

Here x is the distance from the Majorana to the localization
center of a subgap state, ξ is the disordered coherence
length, δE is the energy difference to the target state, and
ωa is the “attempt frequency” corresponding to the
physical process that enables the tunneling event (for
example, electron-phonon scattering, charge noise on gates
[4,54], etc.).
As a specific scenario, we can take the average number

of subgap states in a p-wave wire with finite mean free path
l arising from Gaussian disorder, as worked out in
Ref. [28]:

hNðEÞi ∝ L
ξ0

�
E
Δ0

�
η

; η ¼ 4l=ξ0 − 2 ð8Þ

where the proportionality constant is of order one, ξ0 is
the clean coherence length, Δ0 the gap in the zero-disorder
limit, and the parameter η describes the approach to a
disorder-driven topological phase transition when
l ≤ ξ0=2. The apparent coherence length, which governs
the spatial overlap of Majorana wave functions and
diverges at this transition, is given by ξ−1 ¼
ξ−10 − ð2lÞ−1. From Eq. (8), we can extract the energy
window ½0; E0�, with E0 ¼ Δ0½ξ0=ð2xÞ�1=η, that contains on
average 1 state within a distance x from the edge of the
system. Thus, to tunnel into a subgap state at distance x an
electron typically needs to gain an energy

δE ¼
Z

E0

0

EνðEÞdE ¼ Δ0η

1þ η

�
ξ0
2x

�
1=η

: ð9Þ

The optimal tunneling distance is then obtained by maxi-
mizing the rate Eq. (7) with respect to x,

xopt ¼
ξ

2

�
ηþ 2

η

�η−1
ηþ1

�
1

ηþ 1

Δ
kBT

� η
ηþ1

: ð10Þ

Note that this expression has been written in terms of the
disordered coherence length and transport gap, using
ξ=ξ0 ¼ ðηþ 2Þ=η. Then, finally, the typical leakage rate
is obtained from Eq. (7) at xopt:

Γsub ¼ ωa exp

�
−gðηÞ

�
Δ
kBT

� η
ηþ1

�
ð11Þ

with gðηÞ ¼ ðηþ 1Þ1=ηþ1ð½ηþ 2�=ηÞðη−1Þ=ðηþ1Þ. Crucially,
this rate is suppressed by a stretched exponential in
Δ=ðkBTÞ.
To gain intuition for the timescale in realistic devices we

first take a (transport) topological gap of Δ ≈ 100 μeV and
a temperature kBT ¼ 5 μeV (≈50 mK). We also assume
the attempt frequency is the electron-phonon scattering rate

(a) (b)

FIG. 3. (a) Equilibrium poisoning time for transport gap Δ ¼
100 μeV and several values of temperature as a function of l=ξ.
(b) Stretched exponential temperature dependence of equilibrium
poisoning time for several values of l=ξ.
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ωa ¼ γ0 ∼ ð50 nsÞ−1. For l=ξ ¼ 1=4 (or l=ξ0 ¼ 3=4) we
find a typical leakage rate of Γ−1

sub ≈ 30 μs, and already for
l=ξ ¼ 1=2 (l=ξ0 ¼ 1) we find Γ−1

sub ≈ 30 ms. In Fig. 3 we
plot the leakage rate as a function of l=ξ and ofΔ=kBT. It is
apparent that at high temperatures or at the disorder-driven
phase transition the poisoning time is given by the electron-
phonon scattering, however the time can exceed seconds
(with Δ=kBT ≈ 20) for l=ξ≳ 1 and this mechanism of
QPP becomes essentially inoperative when l=ξ≳ 2. While
these estimates are promising, they rely on a simple model
which may be substantially modified in a real topological
superconducting heterostructure, for example due to rare
but strong impurities like dislocations, or the heterogeneous
nature of the system [55].
Conclusions.—We studied the effect of quasiparticle

poisoning in Majorana qubits and found that in mesoscopic
qubit islands nonequilibrium QPs are less harmful than
expected from naive estimates based on the typical bulk
quasiparticle concentration in conventional superconduc-
tors. We have shown that poisoning due to nonequilibrium
QPs is happening at the rate of the QP generation, which we
expect to be of the order of seconds (or even days) and thus
much slower than the timescales of qubit operations.
Another potential source of QPP is the presence of
disorder-induced subgap states. Our estimations show that
Majorana parity leakage into such states is negligible
for weak disorder. Only once the mean free path becomes
comparable to the coherence length, QPP may present a
problem due to subgap states that proliferate as the
system approaches the disorder-induced topological
transition.

We acknowledge useful discussions with Chetan Nayak
and Gijs de Lange.
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