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Van der Waals heterostructures provide a rich platform for emergent physics due to their tunable
hybridization of layers, orbitals, and spin. Here, we find that twisted bilayer graphene stacked between
antialigned ferromagnetic insulators can feature flat electronic bands due to the interplay between twist,
exchange proximity, and spin—orbit coupling. These flat bands are nearly degenerate in valley only and are
effectively described by a triangular superlattice model. At half filling, we find that interactions induce
spontaneous valley correlations that favor spiral order and derive a low-energy valley-Heisenberg model
with symmetric and antisymmetric exchange couplings. We also show how electric interlayer bias broadens
the bands and tunes these couplings. Our results put forward magnetic van der Waals heterostructures as a

platform to explore valley-correlated states.
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Twisted graphene multilayers have risen as a versatile
platform for engineering correlated states of matter. Their
unique flexibility stems from a new tunable length scale,
the moiré length, which generates electronic minibands
with a controllable ratio between kinetic and interaction
energies. As a result, a variety of strongly correlated states
appear in these twisted van der Waals materials, such as
intrinsic superconductivity [1-4], strange metal behavior
[5], and correlated insulators [6]. Furthermore, this plat-
form can realize correlated states that are rarely found in
nature, such as ferromagnetic superconductivity [7] and
interaction-driven quantum anomalous Hall effect [8].

Thus far, investigations into correlated states of twisted
graphene multilayers mostly focus on spontaneous sym-
metry-breaking of the spin (+1/2) degree of freedom, i.e.,
of the symmetry group SU(2), [9]. Interestingly, low-
energy charge carriers in graphene also have two valleys
(K, K') as orbital quantum number with U(1), symmetry
[or approximately SU(2), [10-13]]. This offers additional
possibilities for symmetry breaking due to interactions,
e.g., spontaneous valley-polarized [8] or valley-coherent
[14,15] states, which can become relevant in the context of
superconductivity [16,17]. Here, we show that proximity-
induced spin—orbit coupling can lock spin and valley in a
way that promotes spontaneous symmetry breaking in the
valley sector with spatial valley textures.

Spin—orbit coupling (SOC) in graphene engenders topo-
logical phenomena such as the quantum spin Hall effect
[18] and the quantum anomalous Hall effect [19,20]. The
negligible intrinsic SOC in graphene [21] can be strongly
enhanced extrinsically [22-27], e.g., through proximity to
other van der Waals materials. For example, transition
metal dichalcogenides (TMDs) have been shown to induce
Rashba SOC as large as 15 meV and spin—valley SOC of
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the order of 1.5 meV on a neighboring graphene layer [26].
Ferromagnetic insulators, such as Crls, have been predicted
to induce similar SOC enhancement, in addition to sizable
magnetic exchange fields [19,28]. In twisted graphene
bilayers, the energy scale of the spin—orbit coupling should
be compared with a typical correlation gap that lies
between 0.3 [6] and 8 meV [29]. Even though the
Rashba SOC can compete with these correlated gaps, this
interplay has thus far not received much attention in twisted
van der Waals materials.

In this Letter, we focus on the valley degree of freedom,
described as a two spinor and demonstrate correlations in
the valley spinor of twisted bilayer graphene encapsulated
within ferromagnetic insulators (FIs) with layer-antiferro-
magnetic alignment, see Fig. 1(a). We show that the
combination of twist alongside proximity-induced mag-
netic exchange and Rashba spin—orbit coupling hybridizes
the spins and leads to valley-degenerate flatbands. It is this
valley degeneracy without spin degeneracy that provides a
unique playground for symmetry-broken states solely in the
valley sector. For the latter, we propose a phenomenologi-
cal lattice model that captures the low-energy flatband
valley physics. At half filling of the flatbands, we find that
screened interactions favor valley-spiral order and derive an
anisotropic valley-Heisenberg model with exchange cou-
plings that are controllable through electric interlayer bias.
We discuss potential experimental scenarios to detect this
effect. Notably, the mechanism by which we induce nearly
valley-degenerate flatbands through magnetic proximity
readily extends to other twisted graphene multilayers with
flatbands.

We consider twisted bilayer graphene encapsulated
between ferromagnetic insulators, see Fig. 1(a). We
describe the electronic properties of the system using an

© 2021 American Physical Society
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FIG. 1. Structure and single-particle electronic properties of
twisted bilayer graphene (TBG) encapsulated between ferromag-
netic insulators, see (a) where arrows denote the magnetization of
each FI. (b) Moiré pattern arising from stacking two graphene
layers with relative twist angle a. The pattern has a length scale
¢, With AA, AB, and BA regions. It generates a hexagonal mini-
Brillouin zone with high-symmetry points. (c)—(e) Band struc-
tures at twist angle a ~ 2°, interlayer coupling 7, = 0.12¢, and no
interlayer bias (V = 0): for (c) the isolated TBG, including
(d) local exchange fields with m = ¢, /3, and including (e) both
exchange fields with m = ¢, /3 and Rashba SOC Az = ¢, /3. The
band colors indicate the expectation value of the valley-spin
operator (v*s%), showing fixed spin and valley in (d) and finite
spin mixing at fixed valley in (e). The light blue box marks the
flatband below charge neutrality.

atomistic tight-binding Hamiltonian for the graphene
bilayer,

H:H0+HJ+HR, (1)

to which the FI effectively contributes through virtual
tunneling [20,30-35]. The Hamiltonian H( describes the
bare twisted bilayer, H; includes proximity-induced
exchange fields, and Hpy contains proximity-induced
Rashba spin—orbit couplings [36—38], which strongly break
inversion symmetry in each graphene layer. The bare bilayer
Hamiltonian is Hy = Z<,~,j>,s te] iy + Zi,j,s tichj.st»x_

1,87 ]S
F (1) .
> i Vic; sCis» Where c; ; destroys (creates) an electron with

spin s € {£1/2} at position r; = (x;, ;,z;) in one of the
layers located at z; = +d/2. We consider nearest-neighbor
hopping with amplitude ¢~ —2.7 eV [39]. The interlayer
hopping from site r; to r; is parametrized as f; =
ty[(zi = 2;)*/|r; — r;Plerinil=d/%  with 1, ~0.12¢ that
describes the hybridization over the interlayer distance
d ~2.35a,, with a, the intralayer bond length and ¢ ~
0.3a controlling the hopping range [40-42]. The potentials
V; = p + sgn(z;)V describe the overall chemical potential
and electric interlayer bias V.

We first discuss the system in the absence of interlayer
bias, V =0. Each isolated graphene layer /€ {1,2}

features Dirac-like band touchings at valleys K, K’ [39],
which we label with the eigenvalues v € {£1/2} of the
valley operator »* [43-46]. The decoupled bilayer has
eightfold degenerate bands characterized by valley v, spin
s, and layer [; the latter gets hybridized by interlayer
coupling. A finite twist angle a between the layers leads to
a moiré structure with a characteristic length #,, and
regions labeled AA and AB/BA in accord with the vertical
alignment of the A and B sites between layers, see Fig. 1(b).
The resulting superlattice implies that the spectrum of H,
consists of many minibands, resulting from backfolding the
dispersion of each graphene layer and subsequent interlayer
hybridization [47], see Fig. 1(c). For a large moiré length
¢, and low energies, intervalley scattering is negligible
such that each miniband at Bloch momentum k (in valley
K) is spin degenerate and has a valley partner at —k (in
valley K’). Hence, each eigenvalue is fourfold degenerate
[48-52] or higher along high-symmetry lines in the mini-
Brillouin zone (BZ). These low-energy minibands are
typically dispersive, except for fine-tuned angles [46,49,51,
53-56] or in the limit of tiny twist angles [44,52].

The encapsulation of TBG between ferromagnetic insula-
tors with layer-antiferromagnetic alignment [cf. Fig. 1(a)]
profoundly alters the low-energy spectrum. The FIs induce
exchange fields with moments m; = sgn(z;)mZ ateachsiter;
and generate Rashba spin—orbit couplings Az ; = sgn(z;)Ag
in each graphene layer [57], see Supplemental Material [58]
for a discussion of other SOCs. They are described by
HJ = Zj,ss’ (mj : G)SS’C;,SCJ‘,S” and HR = iZ(i.j),ss’ j'R,ix
(6 xd,; j)ix,cj’s c; ¢ respectively, where d;; is the bond vector
connecting intralayer sites i, j and the components of 6 =
(6*,0”,0°%) are Pauli matrices for spin. Given the layer-
antiferromagnetic alignment of our FIs, the exchange fields
m; act as a (spin-dependent) magnetic interlayer bias [59].
Interestingly, while the exchange field breaks time-reversal
symmetry, the eigenstates are degenerate between spin-1
bands of one valley (say K) and spin-|, of the other (say K”),
see Fig. 1(d), which follows from symmetry under a layer-
exchanging, twofold rotation and time reversal. The Rashba
coupling Az, however, mixes the two spin channels, intro-
duces a sizable hybridization gap around charge neutrality
and flattens the otherwise dispersive bands, see Fig. 1(e).

As aresult, the Fl-encapsulated twisted bilayer features a
van Hove singularity adjacent to the energy gap at charge
neutrality. This singularity is most pronounced for a fine-
tuned ratio «/t; between twist angle and the interlayer
coupling, here corresponding to physical parameters
ax?2° t, =0.12t, when m=1¢,/3, g =1,/3 [58].
The corresponding bands then become maximally flat,
see Fig. 1(e), and their wave functions are concentrated
within the AA region of the moiré unit cell, see Fig. 2(a).
Importantly, these bands are only degenerate in the valley
degree of freedom, whereas spin is fully hybridized—in
contrast to other graphene multilayer systems, where spin
degeneracies persist [50].
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FIG. 2. Effective triangular lattice model for the moiré orbitals
of the flatband. (a) Integrated local density of states n(E,x)
squared of the flatband marked in Fig. 1(e), with AA regions
highlighted. (b) A sketch of the lattice model H,, see Eq. (2),
where cyan circles represent the AA regions, the black lines
denote hoppings 7y, y,, respectively, and the red and blue
triangles represent the staggered flux patterns associated with
corresponding hopping phases ¢, and ¢,. (c, top) Closeup on the
flatband in Figs. 1(e) and 1(c, bottom) comparison with the band
of the phenomenological model [cf. Eq. (2) with y, /¢, = 0.03,
72/t =0.09, ¢, =0, ¢, = —0.4]. The band color indicates the
valley index v = (v%) and illustrates the valley degeneracy along
y-k-k'-y (green on top of magenta). (d) (In-plane) valley spiral
appearing in the mean-field ground state of Hy + Hy, cf. Egs. (2)
and (3). Arrows illustrate the valley polarization (v;) of the
respective moiré Wannier orbital (inset).

These flatbands can be derived from a simple effective
model describing hopping between Wannier moiré orbitals
arranged in a triangular superlattice, see Fig. 2(b), i.e.,

HO = ZyIWIeiTZVIJ¢IWJ + Z}/Zl//}reir:b”d)zwj’ (2)
1) @y

with Pauli matrices 7** for valley, valley spinors

w?) = (dETl) /2 dﬂ 12)» and destruction (creation) operators

dﬂ for electrons in moiré unit cells /, with valley index
v € {£1/2} taking the role of a pseudospin. The form of
the hopping amplitudes follows from symmetry arguments
[58], and we include first- and second-neighbor amplitudes
Y12 > O with phases ¢, , and signs v;; = —v;; € {£1} that
ensure symmetry under rotation by 2z/3, see Fig. 2(b).
Similar complex-valued hopping amplitudes appear in the
Kane-Mele model [18] due to spin—orbit coupling, such
that we refer to ¢ , as “valley—orbit phases” in our model
by analogy. In the absence of interlayer bias, symmetry
enforces real first-neighbor hopping (¢, = 0) [58], whereas
¢, is finite in general. The hopping parameters can then be
chosen to qualitatively reproduce the flatband, see Fig. 2(c).
We will see how interlayer bias affects this low-energy
model later.

The presence of flatbands naturally raises the question of
how interactions affect the corresponding electronic states
near half filling. In our bilayer, this corresponds to doping
with one electron or hole per moiré unit cell. When the
screened Coulomb interactions between the atoms in the
twisted bilayer are shorter ranged than the moiré length £,
[58,60-63], the effective interaction between the moiré
orbitals in (2) becomes

U
Hy = B Z”I,vnl.—m (3)
Iv
where n; , = d}k.vd 1.0 18 the number operator for valley v of

moiré orbital / and U ~0.15¢; [60] is the Hubbard
interaction strength. Our effective model ‘H = Hy + Hy
differs from the conventional Fermi-Hubbard model [64] in
two respects: First, we have valley as pseudospin and,
second, our hopping amplitudes are complex. In what
follows, we consider half filling, such that the expected
occupation number is (n;) = 1, and calculate the valley
order of the ground state, which we characterize by the
expectation value of the valley operator v; = 1//;11//, /2 in
each moiré cell /. We can interpret (v7) as the local valley
imbalance and (v;”) as local valley coherence. We will
see that, similar to other spin-1/2 triangular lattice models
[65-68], our model H, cf. Eqs. (2) and (3), is prone to
valley-spiral states [see Fig. 2(d)] and that valley—orbit
coupling can promote anisotropic exchange [66].

We determine the ground state using a self-consistent
mean-field approximation, ie., Hy~ >, wiU(p")y,—
Ey(p!), with the density matrix p! = (n;)/2 + (v;) - T and
the mean-field interaction U(p’) and shift Ey(p!) [58].
Performing self-consistent relaxation of different initial
states, we find that interactions and geometrical frustration
in the triangular lattice favor a valley-spiral state on the length
scale of the moiré structure, see Fig. 2(d). We find that (i) the
length scale of the spiral varies slightly with the ratio
72/71, and (ii) the spiral favors planar configurations with
(v7) = 0. Hence, the valleys seek a state with equal occu-
pation (n;x) = (n;x) and mix coherently, (v;”) # 0.
Interestingly, in the limit ¢, — 0, stabilization of the in-
plane spiral state is lost such that states with finite compo-
nents (vj) > 0 become degenerate with in-plane configura-
tions; this suggests that the phases ¢, and ¢, in H, [see
Eq. (2) and Fig. 2(b)] play a crucial role in defining the
valley order.

To better understand our mean-field results, we expand
the Hamiltonian H at half filling in the strong-interaction
limit U > y,,y, using a Schrieffer-Wolff transformation
[58,69], resulting in a valley-Heisenberg model with
anisotropic and (anti)symmetric exchange, i.e.,

R, = ZJIJVI v+ Ayvivy + v Dy (v xvy).. (4)
17
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Here, J;;, Ay, and D;; denote the isotropic, anisotropic,
and antisymmetric exchange couplings, respectively.
These couplings are finite for first- and second-neighbor
exchange only (indexed by n =1, 2) and take the form
J, = J%(cos? ¢, —sin® ¢,), A, = 2J9sin?> ¢,,, and D,=
J9sin(2¢,,), with JQ =2y2/U. In the absence of an
interlayer bias (V =0), we have ¢; = 0 such that the
first-neighbor terms in 7, are isotropic. Generally, the
isotropic exchange couplings J, can turn valley magnetic
[70] (J,, < 0) as ¢,, increases; however, for the regimes we
consider here, we restrict ourselves to anti-valley-magnetic
couplings (J,, > 0 for n = 1, 2), which favors valley spirals
due to geometric frustration in the triangular Iattice.
The finite phase ¢, in the second-neighbor coupling
stabilizes in-plane valley configurations by inducing
anisotropy A, > 0 and favors second-neighbor valley
misalignment (canting) due to the antisymmetric coupling
D, > 0. Note that the alternating nature of the signs v;; €
{£1} in our triangular lattice favors valley spirals as well,
rather than chiral structures such as skyrmions [71].
Consequently, there are two distinct mechanisms driving
valley spirals, such that the length scale of the valley spiral
depends on the competition between anti-valley-magnetic
geometric frustration (J,,, n = 1, 2) and the antisymmetric
couplings (D,,, n = 1, 2). In the following, we investigate
how the addition of a finite electric interlayer bias modifies
the results discussed thus far.

Including a finite interlayer bias V > 0 in Eq. (1) induces
effective valley-dependent fluxes v®(r;, E) in real space
that remove the valley degeneracy, see Fig. 3(b); within the
low-energy model H, (2), they modify the valley—orbit
phases ¢ and ¢,. This is formalized by defining the valley
flux of low-energy states [46,72,73] near the energy E and
at position r; as

’k €
onE) = [ SR IG0,6)D,0k). O

where G = [E — H(k) 4 i0"]7'P is the valley Green’s
function with valley-polarization operator P = 20, and
€45 denotes the Levi-Civita symbol. For our flatbands, we
find that the interlayer bias induces a staggered valley flux,
see Fig. 3(a). This flux enters the low-energy model H, (2),
through a Peierls substitution, i.e., 7, > 7, (V)e™%(V) for
n =1, 2, cf. Fig. 2(b). It contributes dominantly to ¢; and
provides a correction to ¢, accounting for the tilt in the
pattern. The bands of the effective model H, (V) obtained
in this way agree with the bands of the tight-binding
Hamiltonian (1), see Fig. 3(b).

Consequently, the interlayer bias controls the effective
valley-exchange couplings in model H, (4) through
the induced valley—orbit couplings ¢,(V) and ¢,(V). In
Figs. 3(c)-3(e), we see that the couplings J;, A,, and D, do
not change significantly with increasing bias V, while the
coupling J, decreases substantially and A; and D both turn

Model & [

S
valley 2 (V%)

Coupling [J,(0)]

0.0 02 0.0 02
interlayer bias V/t|

FIG. 3. Effect of interlayer bias V on single-particle properties
and effective valley—valley exchange interactions in the valley-
Heisenberg model H, (4). (a) Local valley (Berry) flux ®(r, E)
near half filling (at energy E =~ —0.1t ), averaged over the
microscopic scale of model (1) including both layers, see
Eq. (5). The staggered flux is largest in AB/BA regions and
vanishes in the AA regions. (b) Flatband as obtained from the
microscopic model (1) (top) compared with the phenomenologi-
cal model (2) (bottom) at finite interlayer bias V = 0.33¢,, and
with y; =y, = 0.07¢t; and ¢p; = —¢p, = 0.7. Note the difference
with the V =0 result in Fig. 2(c). (c)-(e) Isotropic (J,),
anisotropic (A,), and antisymmetric (D,,) valley exchange cou-
plings, cf. Eq. (4), for first and second neighbors (n = 1, 2) as
interlayer bias V increases. The interlayer bias can enhance the
first-neighbor hopping to the point where y; = y, and ¢p; = —¢»,
resulting in exchange couplings of the same magnitude for first
and second neighbors (here at V ~0.33¢,). (d) The numerical
mean-field (MF) result (open circles) superimposed on the
analytical result (solid and dashed lines) [58].

finite and increase appreciably. Thus, we find that the
interlayer bias (i) increases the easy-plane exchange
anisotropy (increasing A,), (ii) decreases the overall ten-
dency for anti-valley-magnetic order and geometric frus-
tration (decreasing J,,), and (iii) increases canting (through
D,,). Interestingly, this means that the interlayer bias switches
between the two mechanisms responsible for valley spirals
discussed above. Note that there is also a competition of
canting between first- and second-neighbor orbital pairs that
influences the length scale of the valley spiral, where in
numerical mean-field calculations, we predominantly
observed 120° nearest-neighbor or second-neighbor spiral
structures (not shown here).

In contrast to spin, valley is an orbital degree of freedom,
and thus provides an extra challenge when it comes to
interpretation and experimental verification [52,74—-83]. We
propose to make use of the VHE, where band electrons
from different valleys flow in opposite directions, leading
to transverse charge-neutral valley currents [74,75,84].
These currents can be detected as they induce voltages
in other regions of the material through the inverse VHE,
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FIG. 4. Schematic setup for an experiment signaling the
presence of a valley spiral state. (a) Standard four-terminal
device, with valley Hall effect (VHE) driven by a charge current
and inverse VHE driven by a valley current and producing a finite
voltage Vy [74,75]. (b) Fl-encapsulated TBG (FI-TBG) at half
filling of the flatband acts as a filter blocking the valley current
and suppresses the voltage Vy of the inverse VHE.

see Fig. 4(a). Such a four-terminal setup can detect valley-
correlated states through their impact on valley Hall
measurements, e.g., when embedding our system into a
suitable device geometry, see Fig. 4(b). For example, a
valley magnet ((v7) # 0) acts as a valley filter and can be
used to suppress the valley Hall signal for one valley but not
the other. In our case, we expect the planar valley spiral
((v5) = 0) to act as a “coherent valley mixer” [85-87]. This
would strongly suppress the valley Hall signal when the
chemical potential is swept to approach half filling of the
flatband, thus providing an experimental signature for
spontaneous valley mixing. Distinguishing noncollinear
from collinear valley-coherent states is more involved,
but could be achieved by studying valley decoherence,
which is enhanced for noncollinear states.

To conclude, we put forward a minimal graphene-based
heterostructure displaying spontaneous valley mixing,
opening up a pathway to explore valley-correlated states
in twisted graphene multilayers. Going beyond this work,
we observe that our Fl-encapsulated TBG and twisted
double-bilayer graphene (TDBG) have analogous elec-
tronic band structures, except that spin in the former
replaces the additional graphene layers in the latter. This
remarkable similarity suggests that our system is a candi-
date for valley-analogous realizations of recent proposals
and observations [88-90] for TDBG, including correlated
insulators [7,91], magnetic superconductors [89], fractional
quantum Hall states [92-95], and valley liquids [13,96-98].
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