
 

Numerical Study of a Dual Representation of the Integer Quantum Hall Transition

Kevin S. Huang ,1 S. Raghu,1,2 and Prashant Kumar 1,3

1Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA
2Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory,

Menlo Park, California 94025, USA
3Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

(Received 25 October 2020; accepted 13 January 2021; published 4 February 2021)

We study the critical properties of the noninteracting integer quantum Hall to insulator transition
(IQHIT) in a “dual” composite-fermion (CF) representation. A key advantage of the CF representation over
electron coordinates is that at criticality CF states are delocalized at all energies. The CF approach thus
enables us to study the transition from a new vantage point. Using a lattice representation of CF mean-field
theory, we compute the critical and multifractal exponents of the IQHIT. We obtain ν ¼ 2.56� 0.02 and
η ¼ 0.51� 0.01, both of which are consistent with the predictions of the Chalker-Coddington network
model formulated in the electron representation.
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Introduction.—The integer quantum Hall (QH) to insu-
lator transition (IQHIT) is one of the most studied topo-
logical phase transitions in condensed matter physics [1–6].
Without interactions, the existence of a QH plateau requires
quenched disorder, and a magnetic field tunes the system
from a QH state to an Anderson insulator. A beautiful
representation of the IQHIT known as the Chalker-
Coddington model (CCM) involves percolation of droplets
of QH and insulating phases [7]. The CCM has been
amenable to large scale numerical studies of critical
exponents of the noninteracting IQHIT [8].
Nevertheless, all electron representations of the IQHIT

suffer with a drawback: it is difficult to include electron-
electron interaction effects, which are necessary to account
for very basic aspects of the IQHIT. Interactions are
necessary to ensure a nonzero finite temperature electrical
resistivity [9]. Moreover, interactions determine dynamical
scaling laws and superuniversality (the issue of whether or
not integer and Abelian fractional QH transitions belong to
the same universality class). Thus, there is a need for
alternate formulations of the QHIT, which can more easily
address such questions.
In this Letter we present a first step in devising alternate

formulations of the QHIT, making use of a dual
composite-fermion (CF) representation, building on pio-
neering ideas of flux attachment [10–17] and particle-
vortex duality [18,19]. As we show below, in a mean-field
approximation, the CF formulation of the IQHIT belongs
to the same universality class as the one studied in electron
coordinates. However, it offers several distinct advan-
tages: most interestingly, delocalized states occur over all
energies [20,21] at the IQHIT in the CF representation
enabling a finite dc conductivity as T → 0. Furthermore, a
CF theory can more readily incorporate interaction effects,

and can treat integer and fractional QHITs on equal
footing [22].
The phase diagram of the IQHIT is realized in the CF

representation as follows. First, the integer QH state of
electrons with σxy ¼ e2=hmaps onto an integer QH state of
CFs but with opposite Hall conductivity. Second, the
electron insulator is a CF insulator. It only remains to
show that the critical exponents obtained in the CF
representation are identical to those predicted by the CCM.
Using a tight-binding regularization of a CF Hamiltonian,

we compute two critical exponents ν and η describing,
respectively, the divergence of the localization length and
wave function multifractalilty. We find ν ¼ 2.56� 0.02
and η ¼ 0.51� 0.01, both of which are in excellent
agreement with established results obtained from the
CCM [23–34]. Thus, we establish that the IQHIT as viewed
in CF coordinates is governed by the same fixed point as the
CCM. This observation opens new possibilities in studies
of the IQHIT, where interaction effects may be included
more readily.
IQHIT in the idealized CF model.—2D electrons in a

perpendicular magnetic field B can be transformed, via an
exact mapping (“flux attachment”) [12,13] to CFs that
couple to the sum of the external and “statistical” flux
Bþ bðrÞ [14,15]. When two quanta of flux are attached
to each electron, there is an exact identity relating the
CF density to the statistical flux: bðrÞ ¼ −4πnðrÞ. CF
mean-field theory results from “smearing the flux” and the
identity is satisfied only on average: hbðrÞi ¼ −4πhnðrÞi.
With a quenched random potential VðrÞ that varies on
length scales large compared to the magnetic length, the
linear response is a random density δnðrÞ ¼ χVðrÞ, where
χ ¼ m=2π is the uniform compressibility [35]. Thus, in CF
mean-field theory, there is a slaving [20,36] between VðrÞ
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and bðrÞ [37]: VðrÞ ¼ −bðrÞ=2m. Furthermore, for
asymptotic behavior near criticality, we can ignore non-
linear response effects and study the following model
Hamiltonian density:

hðrÞ¼c†
�ð−i∂−aÞ2

2m
þg
2

bðrÞ
2m

−μ

�
c; bðrÞ¼ ϵij∂iaj: ð1Þ

It involves free, spin-polarized fermions with parabolic
dispersion coupled to a random vector potential aðrÞ, along
with a “gyromagnetic term” ðg=2ÞbðrÞ=2m. In the above
context of CF mean-field theory with long-wavelength
disorder, g ¼ 2.
Surprisingly, when g ¼ 2, the system undergoes an

IQHIT as the spatial-average magnetic field b0 ≡ b̄ðrÞ
changes sign. To see why, observe that when b0 ≠ 0, all
finite energy states are localized in the thermodynamic limit
at T ¼ 0. However, there are exact zero energy modes [38]
for b0 < 0, which behave as a filled Landau level. The zero
modes are absent for b0 > 0. As a consequence, the zero
temperature phases are IQH (insulating) states for b0 < 0
(b0 > 0). At the critical point (b0 ¼ 0), the Hall conduc-
tivity can be computed analytically for the Hamiltonian
above, and is σxy ¼ −e2=2h [39]. It follows from the
contrapositive of Laughlin’s gauge argument that states
at all energies are delocalized when b0 ¼ 0. Our present
goal is to obtain critical exponents associated with this
transition using a lattice realization of the above problem.
Lattice model.—The lattice analog of the above consists

of CFs on a square lattice with nearest-neighbor hopping
(we set the lattice spacing to unity). Quenched random
scalar and vector potentials live on the lattice sites and
links, respectively (Fig. 1):

Hlattice ¼ −
X
hiji

c†i ½teiaij þ μδij�cj −
X
i

Vic
†
i ci; ð2Þ

where i, j label lattice sites, and aij ¼ −aji are associated
with the directed nearest-neighbor link connecting sites i

and j. Random fluxes are associated with each square
plaquette of the lattice.
We slave the random chemical potential to the random

flux as follows. Consider a square plaquette, whose vertices
are lattice sites labeled 1–4 in a counterclockwise sense
(Fig. 1). We equate the flux associated with the plaquette,

ϕ□ ¼ a12 þ a23 þ a34 þ a41; ð3Þ

with the average of the 4 random potentials Vi:

ϕ□ ¼ b□ ¼ −
m
g

X4
i¼1

Vi; ð4Þ

where, for simplicity, we take the mass to be the effective
mass of the clean tight-binding model at the bottom of the
band, i.e., m ¼ 1=2t. We repeat the procedure for all
elementary plaquettes of the lattice. We choose Vi,
i ∈ 1…4, from an independent uniform distribution
Vi ∈ ½−W=2þ V0;W=2þ V0�, where V0 ¼ −gb0=4m
and W measures the strength of the disorder.
Therefore, for a weak, long-range disorder and Fermi

energy close to the bottom of the band, the Hamiltonian in
Eq. (2) can be approximated as

Hlattice ≈
ðp − aÞ2

2m
þ g
2

bðrÞ
2m

− 4t: ð5Þ

Notice that since the flux through each plaquette is bounded
in magnitude by π, we have jW=2� V0j ≤ gπ=4m. In
principle one could adopt a more sophisticated procedure
whereby the compressibility is determined in a self-con-
sistent manner in equating the potential and flux disorders.
We choose not to do so for simplicity: as we show below,
the simple procedure employed here is already sufficient to
capture the universal properties associated with the critical
point, provided the Fermi energy remains sufficiently
close to the band bottom to warrant an effective mass
approximation.
Figure 2 displays the density of states over the entire

bandwidth of the lattice model above, for nonzero b0. The
lattice model increasingly accurately captures the behavior
of the ideal model above in the limit where the Fermi level
is close to the band bottom and the disorder is weak. For
practical numerical calculations, however, it will be useful
to use strong disorder which allows for shorter localization
lengths and hence for better finite-size scaling behavior
near the critical point. This deviation from weak and long-
wavelength disorder, as well as lattice corrections to the
effective mass approximation, lead to a shift in the location
of the phase transition as a function of b0: in general, the
IQHIToccurs at a finite value of b0, which approaches zero
as the idealized limit of the previous section is approached.
Localization length exponent.—Employing the standard

transfer matrix techniques [40,41], we study the behavior of

FIG. 1. (a) Tight-binding model on a square plaquette [Eq. (2)].
The flux is proportional to the average potential on the attached
vertices [see Eq. (4)]. (b) Phase diagram of the lattice model.
In the idealized limit, a topological phase transition between a
νCF ¼ −1 IQH state (b0 < 0), and insulator (b0 > 0) occurs at
b0 ¼ bc ¼ 0.
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the localization length in the CF model above. We realize
the tight-binding model on a quasi-1D cylinder of dimen-
sions L ×M, where L is the length of the cylinder along its
axis while M is the circumference. We obtain the locali-
zation length ξMðb0Þ along the axis of the cylinder as a
function of b0 and the system width M with g ¼ 2. In the
2D limit, i.e., M → ∞, it diverges as ξ∞ðb0Þ ∼ jb0 − bcj−ν
near the critical point with the critical exponent ν. We
obtain ν via the finite-size scaling of the dimensionless
localization length: ΛMðb0Þ≡ ξMðb0Þ=M near the critical
point [42]. To achieve this, we fit our data to the following
polynomial function:

ΛMðb0Þ¼
XNR

n¼0

anðM1=νΔÞnþψM−yþc11ψΔM1=νM−y; ð6Þ

where NR is the degree of the polynomial in the relevant
parameter Δ≡ b0 − bc. ψ is the amplitude of the leading
irrelevant operator and y is the corresponding correction to
scaling exponent. Further, an, c11, and bc are fitting
parameters, the last of which gives the location of the
transition.

For W ¼ 3π=2 and Fermi energy EF ¼ −4 at g ¼ 2, we
plot the calculated ΛMðb0Þ in Fig. 3(a). Fitting the data to
the above polynomial form using the standard least square
error method, we extract ν ¼ 2.56� 0.02. Also, for a
stronger disorder, W ¼ 7π=4, we find ν ¼ 2.57� 0.02
[Fig. 3(b)], suggesting that the exponent is independent
of disorder strength. These results are in agreement with the
previous studies of the IQHIT using the CCM [7,23–33].
They support the idea that the two descriptions of IQHIT
lead to the same universal behavior. In addition, we note
that our results are slightly inconsistent with studies based
on other models reporting a smaller exponent [43–45].
Multifractal scaling.—In addition to the localization

length exponent ν, wave function multifractality represents
additional universal characteristics of the IQHIT. They
correspond to the finite-size scaling of the inverse
participation ratios Pq calculated from the critical wave
function ψ :

Pq ≡ Ldhjψ j2qi ∝ L−2ðq−1Þ−ΔðqÞ; ð7Þ

where L is the system size and d ¼ 2. Employing standard
techniques [46,47], we calculate these exponents using the

FIG. 2. Density of states of the Hamiltonian (2) for (a) b0 ¼ 0.5 and (b) b0 ¼ −0.5. There are zero modes near the bottom of the band
for b0 < 0 that become sharper as disorder strength is reduced. Further, they levitate for b0 > 0.

FIG. 3. Scaling of the renormalized localization length as a function of b0 at EF ¼ −4 and (a) W ¼ 3π=2, (b) W ¼ 7π=4. We use
L ¼ 107, and the red to purple data points correspond to M ¼ 16, 32, 64, 128, 256 in order. The best fit to Eq. (6) is drawn with solid
lines and we obtain the critical exponent: (a) ν ¼ 2.56� 0.02, (b) ν ¼ 2.57� 0.02. Critical points are located at b0 ¼ bc where
(a) bc ¼ −0.229 and (b) bc ¼ −0.558.
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critical wave functions of a square system of dimensions
L × L with periodic boundary conditions. Since the total
flux through the sample is quantized in the units of 2π, we
round bc obtained in the previous section to the nearest
integer multiple of 2π=L2.
For the critical point in Fig. 3(a) at b0 ¼ −0.229, we find

η≡ −Δð2Þ ¼ 0.51� 0.01. And for the critical point in
Fig. 3(b) at b0 ¼ −0.558, we get η ¼ 0.52� 0.01. These
are close to the value η ¼ 0.5425 obtained in Ref. [34].
Further, they are also consistent with η ¼ 0.5 predicted in
Ref. [48]. We plot the full multifractal spectra in Fig. 4 and
fit them to the following form symmetric around q ¼ 1=2
[34,49]:

ΔðqÞ ¼ 2qð1 − qÞ½γ0 þ γ1ðq − 1=2Þ2 þ γ2ðq − 1=2Þ2�:
ð8Þ

We find γ0 ¼ 0.129� 0.005; γ1 ¼ 0.003� 0.003; γ2 ¼
−0.0002� 0.0004 and γ0 ¼ 0.133� 0.006, γ1 ¼ 0.002�
0.004, γ2 ¼ −0.00005� 0.00050 for the two critical
points. These are in excellent agreement with the corre-
sponding quantities in Ref. [34]. Likewise, we also find
evidence for corrections to the proposed parabolic form
[50–53] since γ1 ≠ 0. It should be noted that our data do not
show a perfect symmetry around q ¼ 1=2. We believe that
this is due to finite-size effects. Similar to Ref. [34], as we
report in Supplemental Material [54], the asymmetry in
ΔðqÞ approaches zero in the thermodynamic limit.

We summarize the results of all obtained critical expo-
nents in Table I.
While the value g ¼ 2 in Eq. (1) is motivated by CF

mean-field theory, we can consider the effect of relaxing the
value of g on the IQHIT. Such deviations from g ¼ 2 can
arise from lattice corrections to the effective mass approxi-
mation, or from the breaking of particle-hole symmetry in
the disorder-averaged theory [58]. As we show in
Supplemental Material [58], the localization length expo-
nent decreases monotonically with g. The extent to which
such deviations [59] reflect a new universality class for the
IQHITs, or are due to substantial finite-size effects, or from
large corrections to scaling from irrelevant operators,
remain unclear and require further study. We shall return
to these questions in future work.
Discussion.—Our results have several important impli-

cations for the IQHIT, and suggest several new directions of
exploration. The most important implication of our study
governs finite temperature dc transport in the quantum
critical regime. In electron coordinates, extended states
occur at a single energy, and without any interaction effects,
ρxxðT → 0Þ ≠ ρxxðT ¼ 0Þ. By contrast, in the CF repre-
sentation, this issue does not arise, since extended states
occur over a range of energies at criticality. Indeed, a finite
CF resistivity implies the same for the electrical resistivity
via the exact relation [60]:

ρabCF ¼ ρabel þ 4πϵab; ϵab ¼
�

0 1

−1 0

�
: ð9Þ

It is thus the CF representation that guarantees a smooth
T → 0 limit of the resistivity tensor in mean-field theory.
Second, the success of the CFmean-field theory suggests

new analytic approaches to describing the noninteracting
IQHIT. Recent work has shown that the effective theory
governing disorder-averaged quantities in the weak-
coupling regime σCFxx ≫ 1 is a nonlinear σ model with a
topological term, similar to the theory put forward in

FIG. 4. (a) A critical wave function ψ displaying multifractal behavior. Numerically calculated ΔðqÞ at the IQHIT for EF ¼ −4 and
(b) W ¼ 3π=2 and (c) W ¼ 7π=4. We first average jψ j2 over a box of dimensions l × l and then over 1000 wave functions. Using
L ¼ 32, 64, 128, and 256,ΔðqÞ is obtained by performing finite-size scaling according to Eq. (7). The best fit to Eq. (8) using l ¼ 8 data
is drawn with the solid blue line and we get (a) γ ¼ 0.129� 0.005, (b) γ ¼ 0.133� 0.006.

TABLE I. Summary of exponents at Fermi energy EF ¼ −4
and g ¼ 2.

Parameters ν η γ0

W ¼ 3π=2
2.56� 0.02 0.51� 0.01 0.129� 0.005

b0 ¼ −0.229
W ¼ 7π=4

2.57� 0.02 0.52� 0.01 0.133� 0.006b0 ¼ −0.558
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electron coordinates [22]. However, such theories run to
strong coupling, since the critical point itself occurs at
σCFxx ∼Oð1Þ. Recently, a current algebra description of the
IQHIT was proposed in Ref. [48]. Our multifractal scaling
results are in excellent agreement with the predictions of
Ref. [48]. However, the prediction for the localization
length exponent in Ref. [48] requires much larger system
sizes than our current simulations. It is likely that the CF
representation may give way to new analytic treatments.
One possible route is to note that the theory in Eq. (1) is
equivalent to a two-component Dirac fermion at finite
chemical potential in the presence of a random vector
potential. The non-Abelian bosonization of the Dirac
fermion may lead to complementary descriptions in terms
of Wess-Zumino-Witten models. We shall report progress
on such analytic treatments in future studies.
Conclusions.—In summary, we have calculated the

critical and multifractal exponents for the IQHIT using a
composite-fermion representation, which are in agreement
with numerical studies of the CCM. While the electron and
CF formulations have distinct origins, they are expected to
flow to the same IR fixed point governing the IQHIT: in this
sense, the electron and CF formulations are thus “dual” to
one another.
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