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It has been recently shown that monolayers of transition metal dichalcogenides (TMDs) in the 2H
structural phase exhibit relatively large orbital Hall conductivity plateaus within their energy band gaps,
where their spin Hall conductivities vanish [Canonico et al., Phys. Rev. B 101, 161409 (2020); Bhowal and
Satpathy, Phys. Rev. B 102, 035409 (2020)]. However, since the valley Hall effect (VHE) in these systems
also generates a transverse flow of orbital angular momentum, it becomes experimentally challenging to
distinguish between the two effects in these materials. The VHE requires inversion symmetry breaking to
occur, which takes place in the TMD monolayers but not in the bilayers. We show that a bilayer of
2H-MoS2 is an orbital Hall insulator that exhibits a sizeable orbital Hall effect in the absence of both spin
and valley Hall effects. This phase can be characterized by an orbital Chern number that assumes the value
CL ¼ 2 for the 2H-MoS2 bilayer and CL ¼ 1 for the monolayer, confirming the topological nature of these
orbital-Hall insulator systems. Our results are based on density functional theory and low-energy effective
model calculations and strongly suggest that bilayers of TMDs are highly suitable platforms for direct
observation of the orbital Hall insulating phase in two-dimensional materials. Implications of our findings
for attempts to observe the VHE in TMD bilayers are also discussed.

DOI: 10.1103/PhysRevLett.126.056601

Introduction.—The orbital Hall effect (OHE) is the orbital
analog of the spin Hall effect and consists in the appearance
of a transverse current of orbital angular momentum that is
induced by a longitudinally applied electric field [1].
Recently, a renewed interest in orbital magnetism and other
orbital effects [2–5] gave origin to various theoretical studies
on the OHE and related phenomena [6–15]. The possibility
of using the OHE to generate orbital torque in magnetic
materials [16,17] motivated new experimental works on
orbital dynamics in magnetic multilayers [18,19], raising
expectations that orbital angular degrees of freedom may
eventually be employed to process information in logic and
memory devices.
The interrelation between the OHE and the presence of

orbital textures in reciprocal space [10] has been
established and characterized both theoretically and
experimentally in several low-dimensional materials
[5,6,12,13,20,21], widening the class of systems that
may be utilized for orbitronic applications. More specifi-
cally, the occurrence of a relatively large OHE has been
predicted in the 2H structural phase of transition metal
dichalcogenide (TMD) monolayers [6,7], where it is
associated with the presence of a Dresselhaus-like orbital
texture around the valleys [6]. However, it is experimentally

challenging to observe just the OHE in 2H-TMD mono-
layers due to the concurrent presence of the valley Hall
effect (VHE) that also contributes to the transport of orbital
angular momentum in these systems [22].
It is noteworthy, though, that the VHE manifests only in

the absence of inversion symmetry, which naturally
happens for the monolayers, but for bilayers, comprising
two monolayers rotated by π with respect to each other, the
inversion symmetry is restored. This substantially affects
valley related phenomena [23–25]. For instance, the valley
Hall conductivity has opposite signs in each layer, cancel-
ing the VHE for the bilayer [26–28], as we shall sub-
sequently discuss. Nevertheless, it is also possible to break
inversion symmetry in the bilayers by applying an electric
field perpendicular to the layers, by means of which one
can control the valley polarization [29] and the VHE
intensity [25] with a gate voltage.
Here, we perform calculations of the orbital Hall

conductivities for ultrathin films (single layer and bilayer)
of 2H-MoS2 which is representative of this class of
systems. We combine density functional theory (DFT)
and an effective low-energy model to disentangle the valley
and orbital physics of TMD bilayers and explore some of
their topological orbital features.
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Implications of our findings regarding interpretations of
recent experiments on the electric control of the VHE in
MoS2 bilayers [24,25] are also briefly discussed. Our
results strongly indicate that bilayers of TMDs constitute
a fertile playground for exploring orbital angular momen-
tum current generation in 2D-like systems.
DFT results.—Our DFT calculations [30,31] were

performed with the plane-wave-based code QUANTUM

ESPRESSO [32]. The exchange and correlation potential is
treated within the generalized gradient approximation [33].
The ionic cores were described with fully relativistic
projected augmented wave (PAW) potentials [34]. We used
a cutoff energy of 63 Ry for the wave functions and a value
10 times larger for the charge density. In order to reproduce
the interlayer distance of the MoS2 bilayer, we have used
the DFT-D3 [35] method, which describes reasonably well
the van der Walls forces in these systems. We have chosen a
10 × 10 × 1 reciprocal space sampling, and to avoid
spurious interaction due to periodic boundary conditions,
we insert a vacuum spacing of 15 Å. We constructed an
effective tight-binding Hamiltonian from our DFT calcu-
lations using the pseudoatomic orbital projection (PAO)
method [36,37]. The PAOmethod consists of projecting the
DFT Kohn-Sham orbitals into the compact subspace
spanned by the pseudoatomic orbitals which are naturally
built into the PAW potentials. The PAW potentials used for
the Mo and S were constructed with a sspd and sp basis,
respectively.
Once the PAO Hamiltonian is constructed, we can

calculate the spin Hall (SH) and orbital Hall (OH)
responses to an applied electric field [1,6,8,13,38–40].
Up to linear order on the external field, they are given by

σηOHðSHÞ ¼
e

ð2πÞ2
X
n

Z
BZ

d2kfnk⃗Ω
Xη

n;k⃗
; ð1Þ

where σηOHðSHÞ is the orbital Hall (spin Hall) dc conductivity
with polarization along the η direction, and

ΩXη

n;k⃗
¼ 2ℏ

X
m≠n

Im

�hψn;k⃗jj
Xη

y;k⃗
jψm;k⃗ihψm;k⃗jvxðk⃗Þjψn;k⃗i

ðEn;k⃗ − Em;k⃗ þ i0þÞ2
�
; ð2Þ

represents the angular-momentum-weighted Berry curva-
ture [10,40]. Here, En;k⃗ denotes the eigenvalue of the
Hamiltonian Hðk⃗Þ in reciprocal space, and jψn;k⃗i is
the corresponding eigenvector; n is the band index, k⃗ is
the wave vector. The velocity operators are defined as
vxðyÞðk⃗Þ ¼ ∂Hðk⃗Þ=∂ℏkxðyÞ, where x and y specify the
Cartesian axes, and we assume that the electric field is
applied along the x̂ direction. The current density operator
component along ŷ with polarization η is defined as
j
Xη

y;k⃗
¼ ½Xηvyðk⃗Þ þ vyðk⃗ÞXη�=2, where, for the SH conduc-

tivity, Xη ¼ ŝη and for the OH conductivity (OHC),
Xη ¼ l̂η; ŝη and lη represent the η components of the spin

and of the atomic angular momentum operators, respec-
tively. This is implemented in the PAOFLOW code [41] that
has been successfully used to study topological materials
[42,43] and time dependent spin dynamics [44] among
other topics. For our conductivity calculations, we have
increased the sampling to 200 × 200 × 1 k points in the
2D BZ.
Figures 1(a) and 1(b) illustrate results of our calculations

for a monolayer and for a bilayer of 2H-MoS2, respectively.
In the left panels of Fig. 1, we compare the band structures
obtained from DFT (purple solid lines) and from PAOFLOW

(yellow dashed lines). The agreement between the two
approaches is excellent. For the monolayer, we obtain a
direct energy-band gap of 1.60 eV, whereas for the bilayer,
we found an indirect gap of 1.28 eV, in agreement with
previous calculations [45]. The results for the SH conduc-
tivity (SHC) (red solid lines) and for the OHC (blue lines)
are shown in the right-hand side panels of Fig. 1. In
accordance with our previous results for the monolayer [6],
we note in the right panel of Fig. 1(a) that the SHC vanishes
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FIG. 1. Energy band structures (left panel) together with the
spin-Hall and orbital-Hall conductivities (right panel) calculated
for a MoS2 monolayer (a) and for a MoS2 bilayer (b). The purple
solid and yellow dashed lines depict the DFT and PAOFLOW band
structure calculations, respectively. The horizontal blue dashed
line shows the Fermi level.
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in the main energy gap, but the OHC is finite and exhibits a
relatively high plateau of ≈2.6 (e=2π) in height within this
energy range. For the bilayer, however, the right-hand side
panel of panel Fig. 1(b) show that the height of the OHC
plateau is essentially twice the monolayer value, while the
SHC remains null in the main energy gap because it is
topologically trivial. Although other regions in the BZ
contribute to the OHC [7], the main contribution originates
from the orbitally projected Berry curvature in the vicinity
of K and K’, as illustrated in the Supplemental Material
[46]. To explore the physics behind these results, it is
instructive to make use of a low-energy approximation
around the K points (valleys) of the BZ, to build a simple
model that is able to reasonably describe the main transport
characteristics of these systems.
Low energy calculations.—Similar to the monolayers,

the low-energy physics of TMD bilayers is dominated by
the dz2 , dx2−y2 , and dxy atomic orbitals of the transition
metal atoms [26,54,55]. We follow references [26,27] to
build a simplified tight-binding (TB) model Hamiltonian in
reciprocal space, which is expanded up to first order in
the electronic momentum around the valleys located at
K⃗ ¼ ð4π=3aÞx̂ and K⃗0 ¼ −K⃗. This procedure leads to the
following Hamiltonian:

H̃ðq⃗τÞ ¼

2
666664

Δ γþ 0 0

γ− −τszλ 0 t⊥
0 0 Δ γ−

0 t⊥ γþ τszλ

3
777775
; ð3Þ

where γ� ¼ atðτqx � iqyÞ, τ ¼ �1 is the valley quantum
number associated with valleys K and K0, respectively.
Here, k⃗ ¼ q⃗þ τK⃗ where q⃗ represents the wave vector
relative to valleys and sz denotes the usual Pauli matrix. For
a 2H-MoS2 bilayer, an archetypal TMD, Δ ¼ 1.766 eV is
the monolayer band-gap, a ¼ 3.160 Å is the lattice
constant, t ¼ 1.137 eV is the intralayer nearest-neighbor
hopping, λ ¼ 0.073 eV is the spin-orbit coupling, and
t⊥ ¼ 0.043 eV is the interlayer hopping [26].
The TB basis for this minimal model comprises fjd1z2i;

ðjd1x2−y2i − iτjd1xyiÞ=
ffiffiffi
2

p
; jd2z2i; ðjd2x2−y2i þ iτjd2xyiÞ=

ffiffiffi
2

p g,
where the superscripts 1 and 2 specify the two layers of the
bilayer, respectively. It is noteworthy that the orbital
angular momentum (OAM) operator in this representation
is given by Lz ¼ diagð0;−2ℏτ; 0; 2ℏτÞ, which clearly does
not commute with the Hamiltonian defined in Eq. (3).
Equation (2) can be used with the four-band low-energy

Hamiltonian given by Eq. (3) to define the Berry and the
orbital-weighted Berry curvatures that encode information
of the VHE and OHE, respectively. For simplicity, we shall
initially neglect the effect of spin-orbit coupling (λ),
thereby restricting Eq. (3) to a spinless Hamiltonian, and
including a degenerescence factor gs ¼ 2. Equation (2), for

the orbital weighted Berry curvature, may also be
employed to calculate the usual Berry curvature Ωn;k,
provided that Xη is replaced by ℏ1. The spinless
Hamiltonian generates two valence bands [E1ðqÞ and
E2ðqÞ] that can be regarded as arising from each of the
TMD layers because of the relatively small interlayer
hopping. Figures 2(a) and 2(b) present the Berry curvatures
for both E1 and E2 calculated around the K and K0 points,
respectively. The Berry curvature for E2 has a positive peak
at K and a negative peak at K0, which gives rise to a VHE.
The opposite occurs for the Berry curvature of E1, which
has a negative peak around K and a positive peak at K0,
giving origin to a VHE with an inverted sign. By adding the
contributions of both layers, the net Berry curvature is zero
in both valleys, and the VHE vanishes. This is a conse-
quence of time-reversal symmetry and the presence of
spatial inversion symmetry in the bilayer [27,54,56]. A
similar situation occurs for TMDs with the T and T 0
structural phases, such as WTe2 [57]. Figures 2(c) and
2(d) show the orbital weighted Berry curvatures for both
bands around the K and K0 points, respectively. In contrast
to the previous case, the peaks of the orbital-weighted
Berry curvatures for both bands have the same sign around
both valleys. Hence, the total orbital-weighted Berry
curvature has a finite value, which leads to an OH
insulating phase [6] with no VHE, as Figs. 2(e) and 2(f)
illustrate. We note that, in order to assess just the OHE, it is
crucial from the experimental point of view to have an OHE
without a VHE, because the VHE also leads a transverse
angular momentum current [22,58,59] that is hard to
distinguish from the one generated by the OHE, as it

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Berry curvature Ωn;k at points K (a) and K0 (b), orbital
weighted Berry curvature ΩL

n;k at points K (c) and K0 (d) for the
two valence bands E1ðqÞ and E2ðqÞ, associated with the two
layers. (e) Total Berry curvature Ω1;k þ Ω2;k and orbital weighted
Berry curvature ΩL

1;k þ ΩL
2;k for the bilayer TMD at points K (e)

and K0 (f).
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happens for TMD monolayers [6]. Thus, our results show
that bilayers of 2H-TMDs are very promising candidates
for observing the orbital Hall insulating phase with no
interferences from VHE or SH effect.
Now, let us address the topological characterization of

the OH insulating phase in TMD-bilayers. Our Berry
curvature analysis suggests that it is possible to associate
an orbital Chern number to describe the distinctive nature
of these states in analogy with the well known spin Chern
number [60,61]. Here, the situation is slightly more subtle
because the operator Lz does not commute with the
Hamiltonian of Eq. (3) for finite q⃗. This is similar to the
problem of a quantum spin Hall insulator in the presence of
a Rashba spin-orbit coupling. To address this issue, we
follow the procedure developed in Refs. [62–64] to define
the orbital Chern number CL for the insulating phase of the
Hamiltonian given by Eq. (3). In this formalism, CL ¼
ðCþL − C−LÞ=2 where C�L are the Chern numbers calculated
with the eigenstates of an OAM operator projected on the
valence-band states ½Lvðk⃗Þ ¼ Pðk⃗ÞLzPðk⃗Þ�, where Pðk⃗Þ is
the projector operator. If the bands have orbital polariza-
tion, the spectrum of Lvðk⃗Þ consists of two groups of
eigenvalues (ϵ) associated with ml ¼ �2 that are symmet-
rically separated by a gap. The projectors on the eigenstates
associated with the positive and negative eigenvalues can
then be used to calculate the Chern numbers C�L .
Thus, to calculate CL, it is necessary to decompose the

valence-band states into two sectors with respect to
operator Lz. For that purpose, first, we obtain the matrix
Lvðk⃗Þ, with matrix elements given by hψn;k⃗jLzjψm;k⃗i, where
n, m label the valence-band eigenstates of the low-energy
Hamiltonian; more details are given in the accompanying
Supplemental Material [46]. It is worth mentioning that,
hereafter, we reinstate the spin degree of freedom and the
spin-orbit interaction in the Hamiltonian (3). Figure 3(a)
shows the eigenvalues of Lvðk⃗Þ calculated as functions of q.
We clearly see that the spectrum splits in two separated
sectors, allowing us to use the eigenstates of Lvðk⃗Þ in each
valley jΦ�

n;τðq⃗Þi to calculate the Chern numbers

C�L ¼ 1

2π

Z
d2q

X
n;τ

F�
n;τðqÞ; ð4Þ

where F�
n;τðqÞ¼−2Im½h∂qxΦ

�
n;τðq⃗Þj∂qyΦ

�
n;τðq⃗Þi�. Figure 3(b)

shows the integrands of Eq. (4). Since they have azimuthal
symmetry, the calculations of C�L involve numerical
integrations of one-dimensional radial functions only.
Our results for the insulating phases of the 2H-MoS2 bilayer
and single layer are CL ¼ 2 and CL ¼ 1, respectively,
supporting the idea that the relatively weak interlayer hopping
in the bilayer makes it behave approximately as a mere
superposition of its two constituent monolayers, which are
rotated by π with respect to each other.
The existence of a nontrivial orbital Chern number

should lead to the appearance of edge states when the

bulk material is cut to form a ribbon. It is well known that
zigzag TMD ribbons present crossing edge states with
interesting orbital properties, even though Z2 ¼ 0. [65].
Figures 3(c) and 3(d) show the energy band spectra of
2H-MoS2 zigzag nanoribbons, calculated with the use of
PAOFLOW Hamiltonian for a monolayer and a bilayer
including the orbital angular momentum expectation value
hLziðkÞ for each eigenstate [66]. The energy band spectrum
for a monolayer ribbon depicted in Fig. 3(c) clearly shows
two pairs of orbitally polarized intravalley edge states [67]
—one for each spin sector—which is compatible with the
orbital Chern number CL ¼ 1. Results for the bilayer ribbon
are displayed in Fig. 3(d) where we see two pairs of
intravalley edge states per spin sector—which is also
compatible with CL ¼ 2. For the bilayer, the presence of
inversion symmetry is translated in the existence of
positive and negative Lz edge states in both valleys.
For clarity, Fig. 3(d) presents the results for spin-up while
the Supplemental Material [46] presents the two
components.
Experimental signatures.—Now, let us briefly discuss

the experimental signatures of the OHE in TMD bilayers.
Typically, to characterize the OHE in these materials, one
needs the same experimental setups conceived to analyze
VHE in TMD bilayers, where inversion symmetry breaking
is induced by a gate voltage [25,68]. For the bilayer in this
case, both the OHE and the VHE lead to magnetic
moment accumulation at the sample’s edges. To provide
some insights into what should be expected in such
experiments, we include a gate potential in Eq. (3) given
by HU ¼ diagðU;U;−U;−UÞ.

FIG. 3. (a) Positive (orange) and negative (blue) eigenvalues ϵ
of the matrix Lvðk⃗Þ calculated as functions of the wave vector
amplitude q relative to valleys. (b) Integrands of Eq. (4) I�ðqÞ ¼P

n;τ F
�
n;τðqÞ calculated as functions of q. Band structures of

zigzag nanoribbons with 14.8 Å in breadth calculated with the
PAOFLOW Hamiltonian for a monolayer (c) and for the spin-up
sector of a bilayer (d) of 2H-MoS2. The color code indicates the
orbital angular momentum expectation value hLzi. For better
visualization, in the bilayer case, only the spin-up bands are
shown. The spin-down band structures are shown in the Supple-
mental Material [46].
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For a finite U, the inversion symmetry is broken in the
bilayer and the VHE takes place. The OH and VH con-
ductivities can be calculated using Eqs. (1)–(3). To calculate
the VH conductivity (VHC), we substitute the integrand
of Eq. (1) by Ωn;q⃗=ℏ, and rewrite σVH ≡

�
στ¼þ1 − στ¼−1

�
.

Figure 4(a) shows our results for the OHC (σzOH) and VHC
(σVH) calculated as functions of the Fermi energy (EF) for
positive and negative values of U. There are clear differences
between the two quantities. While the OHC is an even
function of EF, the VHC is odd. Also, the OHE is an even
function of U, whereas the VHE is odd—the valley magnetic
moment inverts when U changes sign [24]. Panels (b) and (c)
of Fig. 4 show the energy spectrum for U ¼ 0 and
U ¼ 0.2 eV, respectively. It is clear that U produces a rigid
energy-band shift for the two layers, without changing their
orbital polarizations. The OHE should remain unchanged for
small variations of EF, but decreases when EF crosses any
band, as individual bands in each valley contribute to the total
Chern number. We have also performed DFT calculations for
the OHE in the presence of an electric field applied
perpendicularly to the layers [69]. The results support our
low-energy analysis and are presented in the Supplemental
Material [46].
Kerr rotation microscopy experiments [25] showed that a

bilayer of MoS2 exhibits a sizeable Kerr rotation even in the
absence of an applied gate voltage. It was argued that this
unexpected behavior could originate from substrate
induced inversion symmetry breaking. Recent nonlocal
resistance measurements in a hexagonal boron nitride
(h-BN) encapsulated bilayer of MoS2 also exhibited a
nonlocal signal at zero gate voltage [68]. The interpretation
was the same, although one should not expect h-BN to

cause such a large inversion symmetry breaking effect. On
the other hand, the OHE could be the source of this
experimental evidence and explain the unexpected signals
at zero bias in the bilayers. Careful experimental analysis of
Kerr rotation and nonlocal resistance measurements as
functions of gate voltage may help to distinguish between
the orbital and valley Hall effects in these materials. The
results illustrated in Fig. 4, in light of the experiments
reported in Refs. [25,68], suggest that ultrathin films of
TMDs are promising platforms for exploring the OHE in
2D materials.
Final remarks and conclusion.—Our DFT calculations

showed that centrosymmetric two-dimensional materials,
such as a bilayer of 2H-MoS2, can host an orbital Hall
insulating phase in the absence of both spin and valley Hall
effects. Using MoS2 as a prototype of the TMD family, we
have also unveiled the topological nature of OHE in these
systems and calculated the orbital Chern numbers for
2H-TMDs. Our work clarifies the interplay between orbital
and valley Hall conductivity in bilayer TMDs. We found
that, in the absence of a gate voltage between the layers, the
magnetic moment accumulation observed in experiments
should be dominated by the OHE, as VHE is zero in
centrosymmetric materials. For finite bias, OHE and VHE
are still decoupled and can behave as competing effects.
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