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We identify the precise hallmarks of the local magnetic moment formation and its Kondo screening in
the frequency structure of the generalized charge susceptibility. The sharpness of our identification even
pinpoints an alternative criterion to determine the Kondo temperature of strongly correlated systems on the
two-particle level, which only requires calculations at the lowest Matsubara frequency. We showcase its
strength by applying it to the single impurity and the periodic Anderson model as well as to the Hubbard
model. Our results represent a significant progress for the general understanding of quantum field theory at
the two-particle level and allow for tracing the limits of the physics captured by perturbative approaches for
correlated systems.
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Introduction.—The goal of any successful theory is to
extract essential features of the phenomena of interest from
the complexity of the physical world, neglecting all super-
fluous pieces of information. This objective is particularly
crucial for the cutting-edge quantum field theory (QFT)
approaches designed to describe many-electron systems in
the presence of strong correlations.
Presently, one can rely on a solid textbook interpretation

[1,2] of the QFT formalism describing the single-particle
(1P) processes, measurable, e.g., by (angular resolved)
direct and inverse photoemission [3] or scanning tunneling
microscopy [4,5]. Crucial information about the metallic or
insulating nature of a given many-electron problem, as
well as quantitative information about the electronic mass
renormalization Z and quasiparticle lifetime τ is encoded in
the momentum and energy dependence of the electronic
self-energy Σ. If the temperature T is low enough, even a
quick glance at the low-energy behavior of Σ, either
in real or in Matsubara frequencies, yields a qualita-
tively reliable estimate of the most important physical
properties.
The situation is clearly different on the two-particle (2P)

level, which can be experimentally accessed by, e.g.,
inelastic neutron scattering [6,7]. Because of the complex
physical mechanisms at play, the related textbook knowl-
edge is mostly limited to general definitions [1,2]. For this
reason, corresponding analytical or numerical calculations
are often performed with significant approximations or
with a black-box treatment of the 2P processes. However,
the last decade has seen a rapid development of methods at

the forefront of the many-electron theory [8–10], for which
generalized 2P correlation functions are the key ingredient.
This is reflected in an increasing effort to develop the
corresponding formal aspects and algorithmic procedures
[8–31]. At the same time, the rather poor physical under-
standing of the 2P processes remains largely behind
the requirements of the most advanced QFT methods.
Interesting progress has been recently reported [32,33] on
the relation of 1P Fermi-liquid parameters to 2P scattering
functions. Ideally, however, one would like to be able to
interpret the physics encoded at the 2P level with a similar
degree of confidence as for the 1P processes.
In our Letter, we make a significant step forward in this

direction: We identify the fingerprints of two major hall-
marks of strong correlations in the generalized charge
susceptibility. In particular, we pinpoint the frequency
structures encoding the formation of local magnetic
moments as well as of their Kondo screening. In this
perspective, we also show how the Kondo temperature TK
corresponds to a specific property of the generalized charge
susceptibility, allowing for an alternative, simple path of
extracting its value directly from the lowest Matsubara
frequency data.
We recall that the Kondo problem [34] provides a

paradigm for a variety of physical effects [35–39] involving
strong electronic correlations. Local moment formation and
Kondo screening are also a crucial ingredient of the physics
described by the dynamical mean-field theory (DMFT) [40]
through the solution of a self-consistently determined
auxiliary Anderson impurity model (AIM).
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Learning how to extract important physical informa-
tion from the generalized susceptibility represents a sub-
stantial improvement for the understanding of quantum
many-electron physics at the 2P level. Further, having this
information at hand also enables us to draw conclusions on
two relevant theoretical questions: (i) The relation of the
recently reported multifaceted manifestations [41] of the
breakdown of perturbation theory, such as the divergences
of the irreducible vertex functions [15,42–49] and the
crossing of multiple solutions [41,45,46,48,50–53] of the
Luttinger-Ward functional, with the local moment physics
and its Kondo screening; (ii) the built-in limits of advanced
perturbative approaches to describe these fundamental
physical effects.
How to read two-particle quantities.—We start from the

definition of the generalized local susceptibility [10,12,54]

χ̃νν
0

σσ0 ðΩÞ ¼ Gð2Þ
σσ0 ðν; ν0;ΩÞ − T−1GðνÞGðν0ÞδΩ0δσσ0 ð1Þ

in terms of the 2P (Gð2Þ) and 1P (G) Green’s functions,
where ν; ν0 and Ω are fermionic and bosonic Matsubara
frequencies, respectively, and σ; σ0 ¼ f↑;↓g spin indices.
As we show in the following for repulsive interactions, the
generalized charge susceptibility χ̃νν

0 ðΩÞ ¼ χ̃νν
0

↑↑ðΩÞ þ
χ̃νν

0
↑↓ðΩÞ allows for the best readability of the underlying
physics at the 2P level. Furthermore, the physical response
of this sector captures the fundamental properties of any
interacting electron system. We recall that the physical
response function (χ) is obtained from the generalized
susceptibility χ̃νν

0 ðΩÞ by summing over the fermionic
Matsubara frequencies ν, ν0 [54]. The static charge response
χðΩ ¼ 0Þ reads

χ ¼ T2
X

νν0
χ̃νν

0 ¼ T2
X

νν0
ðχ̃νν0↑↑ þ χ̃νν

0
↑↓Þ: ð2Þ

We start by analyzing the arguably simple case of an
isolated atom with a repulsive interaction U (Hubbard
atom, HA), where analytic expressions are also avail-
able [12,48]. This represents the purest realization of local
moment physics, which hence provides an ideal baseline
for the interpretation of the more interesting cases dis-
cussed below. In Fig. 1 (upper panels), we show an
intensity plot of χ̃νν

0
(normalized by T2) for U ¼ 5.75

[84], half filling (where χ̃νν
0
is real [12,48]) and different

temperatures. At high temperature (Thigh ¼ 2, left panel),
the overall frequency structure consists of a large positive-
valued diagonal (yellow and red) and a weak negative cross
structure (blue). This corresponds to a typical perturbative
behavior [12,16], dominated by the diagonal bubble term
χ̃νν

0
0 ¼ χ̃νν

0
0;↑↑ ¼ −δνν0GðνÞ2=T: Correlation effects are

washed out for T ≳ U, consistent with the feasibility of
high-T expansions.
The situation changes radically when reducing T: in the

intermediate (T int ¼ 0.1) and low (T low ¼ 1=60 ≈ 0.017)

temperature regime (central and right panel), one observes
a strong damping of all diagonal elements of χ̃νν

0
. The effect

is more pronounced at low frequencies, as the sign of
χ̃ν¼ν0 becomes even negative (bluish colors) for jνj≲ U
[48] (black square). This major feature is accompanied by
the appearance of small positive off-diagonal elements
(yellow). The net effect is a suppression of the physical
susceptibility χ, see Eq. (2), which occurs when the thermal
energy is no longer large enough (T ∼ ν < U) to counter
the formation of a local moment driven by U, eventually
yielding an exponentially small χ ∼ e−U=2T for T → 0.
Altogether, the low-T HA results illustrate how the onset
of a pure local moment is encoded in the charge sector: a
progressive emergence of a nonperturbative sign structure
in χ̃νν

0
, which is the opposite image of the perturbative one

(left panel). This also induces several negative eigenvalues
of χ̃νν

0
, responsible for the breakdown of perturbative

expansions [41].
Let us now examine how this picture changes when

the HA system is connected to an electronic bath (here:
with a flat DOS of bandwidth W ¼ 20 and hybridization
V ¼ 2 < U ¼ 5.75 [84]), corresponding to the well-known
Anderson impurity model (AIM). By comparing the results
of T2χ̃νν

0
(central-row panels of Fig. 1, computed with

w2dynamics [54]) to those of the HA, we observe almost
no difference at Thigh. This is not surprising as thermal
fluctuations prevail over both correlation (U) and hybridi-
zation (V) effects in this case. Upon lowering T to T int, we
enter the local moment regime of the AIM. This is reflected
in a qualitatively similar evolution as seen in the HA: a
progressive suppression of the diagonal entries of χ̃νν

0
,

turning negative in the low-energy sector (black square),
accompanied by positive, yet smaller, off-diagonal contri-
butions, with an overall freezing effect on the local density
fluctuations [see Eq. (2) and the Supplemental Material
[54] ]. This is how the formation of a local moment affects
the charge sector, thus representing its fingerprint.
However, due to the screening effects of the bath its
features get weakened, explaining the quantitative
differences to the HA (e.g., the reduced size of the black
square).
The most interesting situation is encountered when

reducing T further down to T low ≳ TK (right panel), where
the Kondo screening induces qualitative differences with
respect to the HA. We observe that the low-frequency
diagonal elements of χ̃νν

0
(white square) are flipped back to

positive, as in the perturbative regime. This trend is driven
by the low-energy correlations between electrons with
antiparallel spins (χ̃ν¼ν0

↑↓ ) [54]. The weakening of their
negative contribution increases the physical charge sus-
ceptibility χ [see Eq. (2) and Supplemental Material [54] ]
and simultaneously mitigates the magnetic response.
However, in the intermediate frequency regime, the diago-
nal elements of χ̃νν

0
are still negative, reflecting the under-

lying presence of a (partially screened) local moment.
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The fingerprint of the Kondo regime is, thus, the onionlike
frequency structure of χ̃νν

0
, which is clearly recognizable in

the rightmost central panel of Fig. 1: (i) a high-frequency
perturbative asymptotic, (ii) a local moment driven struc-
ture (with suppressed diagonal) at intermediate frequencies,
(iii) an inner core [with a similar sign structure as (i)]
induced by the Kondo screening. A quick glance at the sign
structure of χ̃νν

0
therefore allows for an immediate under-

standing of the underlying physics. This nicely illustrates
the balanced competition in the charge sector between the
freezing effects of the local moment and the defreezing
effects of its low-energy screening, which characterizes the
Kondo regime.
Note, that the onionlike structure is also found for other

values of U, as well as in other models [54], discussed
below.

How to extract the Kondo temperature.—The behavior
described above is also reflected in the temperature
evolution of the lowest frequency entries of χ̃νν

0
:

the diagonal χ̃D ¼ T2χ̃πT;πT and the off-diagonal
χ̃O ¼ T2χ̃πT;−πT , shown in the lowest panel of Fig. 1.
We can readily trace the sign changes marking the three
regimes discussed above, associating the (negative) mini-
mum of χ̃D with the temperature at which the strongest
local moment effects are observed. The screening induced
enhancement of χ̃D at lower temperatures has remarkable
consequences: We find that crossing the Kondo tempera-
ture, as defined in a standard way from the behavior
of the static magnetic response of the system [54]
(TK ¼ 1=65 ≈ 0.015 at U ¼ 5.75 for the AIM), matches
with high accuracy the equality of χ̃D and χ̃O observed
at low-T (see inset of Fig. 1, marked by black triangle).

FIG. 1. Comparison of the Matsubara frequency structure of T2χ̃νν
0 ðΩ ¼ 0Þ for the HA (top row) and the AIM (center row) for

U ¼ 5.75 [84] and different temperatures. The maximal Matsubara index is kept fixed for all temperatures (the labels are hidden to
ensure better readability). Black and white squares mark the main frequency structures, as described in the text. Lower panel:
Temperature evolution of the lowest Matsubara frequency elements of T2χ̃νν

0 ðΩ ¼ 0Þ: χ̃D ¼ T2χ̃πT;πT (violet) and χ̃O ¼ T2χ̃πT;−πT

(green). They cross at Thigh at the divergence of Γ (red, I), and at low-temperatures at T ≃ TK (black triangle), see also the inset showing
a zoom around TK (vertical blue line). The arrows with and without the surrounding cloud sketch the local moment and the Kondo
screened regime, respectively.
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We emphasize that this criterion holds more generally.
As shown in the phase diagram of the AIM in Fig. 2 (left
panel), the condition χ̃D ¼ χ̃O (black triangles) perfectly
traces TK (blue line) [85] in the entire local moment regime
T; V < U (see also the logarithmic inset), i.e., where the
definition of a Kondo scale is actually meaningful. Note
that this is not the case for other criteria one could naturally
think of, such as χ̃D ¼ −χ̃O or χ̃D ¼ 0 [54].
Moreover, our simple 2P definition of TK holds also

beyond the single impurity problem. In Fig. 2, we show
DMFT calculations for the periodic Anderson model on a
square lattice with nearest-neighboring hopping t (PAM,
central) and for a Hubbard model on a Bethe lattice with
unitary half-bandwidth D (HM, right) [54].
In particular, we observe that for the PAM, the same

matching of the condition χ̃D ¼ χ̃O (black triangles) and TK
[54,86,87] (blue line) is found in the local moment regime
(i.e., when V < t, blue-shadowed area).
In the HM, the Kondo temperature characterizing the

auxiliary AIM associated with the self-consistent DMFT
solution, depends on the temperature itself: THM

K ðTÞ.
Hence, χ̃D ¼ χ̃O (black triangles) indicates that the
temperature equals the effective Kondo temperature, i.e.,
THM
K ðTÞ ¼ T. Physically, it is natural to relate this con-

dition to the onset of low-energy electronic coherence: For
all temperatures below the χ̃D ¼ χ̃O condition, a conven-
tional Fermi-liquid behavior of the physical response can
be expected [e.g., ρðTÞ ∝ T2, cVðTÞ ∝ T, etc. [1] ]. This
would also be consistent with the χ̃D ¼ χ̃O condition
approaching the Mott Hubbard metal-insulator transition
(MIT) at UMITðT ¼ 0Þ ¼ Uc2 in the low-T limit (see also
recent DMFT studies of the physics in the proximity of the
MIT [88,89]).
The equality of the elements of the innermost 2 × 2

submatrix of χ̃νν
0
represents therefore a very simple, clear-

cut criterion for determining TK at the 2P level.

A nonperturbative Fermi liquid.—Beyond its physical
relevance, our improved 2P understanding sheds light onto
the nontrivial relation with the breakdown of perturbation
theory [41]. At high T, where ν0 ¼ πT ≳ V, U, t, the 2 × 2
submatrix encodes all relevant energy scales, the rest being
nonsingular high-frequency asymptotics. In this case
χ̃D ¼ χ̃O corresponds to a singular eigenvalue of the entire
χ̃νν

0
and hence to a divergence of the irreducible vertex

function Γνν0 ¼ ½χ̃νν0 �−1 − ½χ̃νν00 �−1, specifically to the first (I)
one encountered when reducing the temperature (red line in
Figs. 1 and 2) [42,45,47–49]. For intermediate temper-
atures, the 2 × 2 submatrix is controlled by the local
moment, leading to a strongly negative χ̃D and negative
eigenvalues of the submatrix (as in the HA case). At TK the
eigenvalue flips sign and one finds again χ̃D > χ̃O for
T ≲ TK, as in the perturbative regime (see Fig. 1, lowest
panel). Here, however, because of the onionlike structure of
χ̃νν

0
, the positive definiteness (and thus the invertibility) is

guaranteed only for an inner submatrix describing the
Fermi liquid regime, but not for the full χ̃νν

0
. This explains

why divergences of irreducible vertex functions can occur
also at low temperatures [47] even in the presence of a
Fermi liquid ground state. Indeed, such vertex divergences
mark the distinction between a Fermi liquid in the weak-
coupling and in the strong-coupling regime.
Limitations of perturbative approaches.—The direct

link between the 2P fingerprints of local moments and
vertex divergences, sets precise physical limitations for
perturbative methods, where—per construction—Γ is
finite [90]. Hence, the impact of the characteristic physics
emerging from the magnetic sector onto the charge
channel, cannot be described by perturbative methods.
We substantiate this statement by considering two
advanced perturbative schemes, the functional renormal-
ization group (fRG) [9,54] and the parquet approximation
(PA) [16,54,91–101]. The results obtained for the AIM

FIG. 2. Phase diagram of the AIM (left), the PAM (DMFT) (middle), and the HM (DMFT) (right) as a function of the interaction
U (hybridization V for the PAM, U fixed) and the temperature T showing the line where χ̃D ¼ χ̃O holds (black triangles, dashed), i.e.,
the singularity of the 2 × 2 submatrix of χ̃νν

0
. The left and central panels show the agreement at low temperatures between TK (blue solid

line) and the condition χ̃D ¼ χ̃O, clearly evident also in logarithmic scale (left inset). The local moment regime is represented by a bluish
shadowed area in both panels. The red lines denote the (first) divergence of the irreducible vertex Γ. For the HM on the Bethe lattice the
paramagnetic metallic (PM) and insulating (PI) phases are indicated together with their crossover. The coexistence region is shown in
gray. The arrow on the abscissa (left) marks the interaction value used in Figs. 1 and 3.
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with U ¼ 5.75 [84] and T ¼ T int are shown in Fig. 3. χ̃νν
0

computed by the fRG and PA (upper panels) appear
qualitatively different from the (numerically) exact one
of Fig. 1 (AIM, central): The diagonal elements are all
positive and substantially larger than the off-diagonal
ones. This ensures the positive definiteness of the entire
χ̃νν

0
, preventing the suppression effects of the charge

response, which characterize the local moment regime.
This drawback qualitatively affects the physical descrip-
tion. In particular, the temperature dependence of the
numerically exact physical charge susceptibility χ (Fig. 3,
lower panel) exhibits a clear minimum for intermediate
Thigh > T > TK . This emerges from the competition
between the suppression induced by the local moment
(see the extreme HA case) and the low-energy screening.
Both features are not captured by the fRG (blue penta-
gons) and PA (brown squares), which display a monotonic
behavior as T is decreased, in the framework of a mere
thermal quenching. At the same time, the perturbative
approaches are able to capture the qualitative correct
behavior of the magnetic response, reflecting the absence
of divergences of Γ in this sector [54].
Conclusions.—We have shown how fundamental physi-

cal properties of correlated systems, i.e., the local moment
formation and its Kondo screening, can be directly read
from the Matsubara frequency structure of the generalized
charge susceptibility χ̃νν

0
. In particular, the competition

between localization effects at higher energies and metallic
screening at lower energies is encoded in a clearly
recognizable “onionlike” fingerprint of χ̃νν

0
, emerging in

the Kondo regime. The thorough inspection of the latter

even discloses an alternative route to extract TK from the
charge sector. Our improved understanding of the 2P
processes sets also clear-cut limits to the physics accessible
to perturbative approaches.
As a future perspective, it will be worth to overcome the

on-site and/or single-orbital framework of our study. We
expect that the role of the local moments will be played by
short-range [8,14,102,103] or Hund’s-driven [104–106]
magnetic fluctuations. Their nonperturbative images could
reverberate, analogously as presented here, onto the charge
and/or pairing response of the system. The identification of
the corresponding fingerprints may open new pathways
toward a microscopic understanding of unconventional
superconductivity in the nonperturbative regime.
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