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Viscoelastic flows through microscale porous arrays exhibit complex path selection and switching
phenomena. However, understanding this process is limited by a lack of studies linking between a single
object and large arrays. Here, we report experiments on viscoelastic flow past side-by-side microcylinders
with variable intercylinder gap. With increasing flow rate, a sequence of two imperfect symmetry-breaking
bifurcations forces selection of either one or two of the three possible flow paths around the cylinders.
Tuning the gap length through the value where the first bifurcation becomes perfect reveals regions of
bistability and tristability in a dimensionless flow rate-gap length phase diagram.
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Since the advent of microfluidics in the early 2000s
[1,2], geometries with length scales l ∼Oð100 μmÞ have
become a vital tool in experimental fluid dynamics. At the
microscale, viscoelastic fluids (with properties between
viscous liquids and elastic solids) can flow with negligible
inertia (Reynolds number Re ∼ l ≪ 1), but high elasticity
(Weissenberg number Wi ∼ l−1 ≫ 1) [2]. In such flows,
elasticity becomes the dominant source of nonlinearity,
leading to instabilities [3–11], and time dependency that
impact widespread processes ranging from jet fragmenta-
tion [12,13] to hemodynamics [14,15] and porous media
flows [16–22]. Earlier studies of viscoelastic porous media
flows focused on understanding the anomalous increase in
bulk pressure drop with flow rate in terms of the extensional
viscosity induced by squeezing and stretching components
in the flow field [23–26]. However, more recent pore-scale
visualization highlights the crucial role of elastic instability
that results in complex path selection and switching phe-
nomena now considered of fundamental importance in
processes including enhanced oil recovery, groundwater
remediation, filtration, and drug delivery [16–21].
Porous media are frequently modeled by ordered and

disordered arrays of microfluidic circular cylinders [17–21,
27]. Flow past a single circular cylinder in a channel is an
archetypal problem in fluid dynamics, and a “benchmark”
for studying viscoelastic flows. The stagnation point
downstream of a cylinder is a location where streamline
curvature combines with strong velocity gradients, con-
ditions that render viscoelastic base flows prone to linear
instability [28–32]. Note that this is in contrast to the

nonlinear, subcritical instabilities that lead to elastic turbu-
lence in parallel shear flows [30,31,33–36]. Downstream
of a cylinder, for viscoelastic fluids with a shear-rate-
dependent viscosity (i.e., shear thinning), fluctuations
caused by the perturbation to the base flow can lead to a
supercritical bifurcation. This time-steady symmetry-
breaking transition is characterized by the flow selecting
a preferred path around one side of the cylinder or the other
[6–8,37]. This behavior has clear relevance to understand-
ing transport through porous arrays, but the interaction with
neighboring array elements is lacking. Building “bottom-
up” complexity toward more realistic model systems, it is
natural to consider two cylindrical objects either aligned
in the flow direction or positioned side by side in a
channel. Viscoelastic flow past two (or more) objects
aligned on the flow axis is a well-studied problem (see,
e.g., Refs. [9,31,38–40]). However, although equally impor-
tant, the case of two objects positioned transverse to the flow
has received scant attention, with only one numerical study
conducted at high Reynolds number [41]. To date, creeping
viscoelastic flow past side-by-side cylinders has not been
studied.
In this Letter, we present microfluidic experiments of a

viscoelastic shear-thinning fluid flowing past two micro-
cylinders transverse to the primary flow direction (Fig. 1)

FIG. 1. Schematic diagram of the x-y plane of the microfluidic
channels (W ¼ 400 μm, R ¼ 20 μm). Flow is left to right at
volumetric rate Q.
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and show that the resulting nonlinear flow behavior at
high Wi is significantly influenced by the spacing of the
cylinders. We show that, due to a combination of super-
critical bifurcations that occur as Wi is varied, multiple
stable time-steady flow states are possible in a given
geometry. This is the first study of low-Re viscoelastic
flow in such a geometry and serves as a fundamental
contribution toward understanding deterministic path selec-
tion in porous media flow.
The model viscoelastic fluid is a well-studied aqueous

wormlike micellar (WLM) solution consisting of 100 mM
cetylpyridinium chloride (CPyCl) and 60 mM sodium
salicylate (NaSal) [42,43]. At 24 °C (ambient laboratory
temperature), the entangled WLM solution has a zero shear
viscosity η0 ¼ 47 Pa s, exhibits a stress plateau (shear-
banding region [44]), and in small-amplitude oscillation is
well described by a single-mode Maxwell model with
relaxation time λ ¼ 1.7 s (Fig. S1 [45]).
Microfluidic channels (Fig. 1) were fabricated in

fused silica by selective laser-induced etching [48].
The 11 channels used all have a rectangular cross
section with width W ¼ 400 μm transverse to the flow
(y direction), height H ¼ 2000 μm in the neutral (z)
direction, and length 25 mm in the primary flow (x)
direction. Each channel contains two cylinders of radius
R ¼ 20 μm located halfway along the channel and equally
spaced on either side of the x axis. The intercylinder
separation L1 is varied between channels in the range
107 < L1 < 147 μm. The spacing between the cylinders
and the channel sidewalls is L2 ¼ ðW − L1 − 4RÞ=2, and
we define a dimensionless gap ratio G ¼ L1=ðL1 þ L2Þ.
This parameter in principle spans 0 < G < 1, where
G ¼ 0 implies the two cylinders are touching at the
channel centerline, while G ¼ 1 implies the cylinders
are touching opposite channel walls. The channels used
span 0.50 ≤ G ≤ 0.62, encompassing the full range of
flow behavior.
Flow is driven by syringe pumps (Cetoni GmbH) pro-

grammed to impose quasistatic variations in the volumetric
flow rate Q; hence average flow velocity U ¼ Q=WH
andWeissenberg numberWi¼ λU=R. Quantitative spatially
resolved flow fields are obtained using microparticle
image velocimetry (TSI Inc., [49,50]). At each imposed
Wi, the motion of a low concentration of fluorescent seeding
particles (2 μm diameter Fluoromax red, Thermo Scientific
Inc.) is captured at the channel half-height (z ¼ 0 plane)
using an inverted microscope (Nikon Ti) with a 5×, NA ¼
0.15 numerical aperture objective lens and a high speed
camera (Phantom Miro) working in frame-straddling mode
at 25 Hz. Cross-correlation between images yields velocity
vectors u ¼ ðu; vÞ. Since the flows examined are all time
invariant, data are ensemble averaged over a 6 s sampling
window. The shear-thinning nature of the WLM solution
renders the flow profile essentially pluglike over most
of the channel cross section [7]. Therefore, the shear rate

near the cylinders is small and we define Re ¼ ρUR=η0,
where ρ ¼ 1000 kgm−3 is the fluid density. In all experi-
ments, Re≲ 10−4.
Flow fields representative of those observed as Wi is

varied are shown in Fig. 2 using two channels with
contrasting G. Figures 2(a)–2(c) and Figs. 2(d)–2(f) illus-
trate the behavior for “small” and “large” G, respectively.
Irrespective of G, for low Wi < Wi1 ≈ 15 [Figs. 2(a) and
2(d)], elastic and inertial forces are small and the flow is
dominated by the viscous force. Flow is approximately
symmetric about x ¼ 0 and y ¼ 0, and fluid passes through
all three available gaps. For small G ¼ 0.500, as Wi
exceeds Wi1 [Fig. 2(b)], elasticity dominates and the
system undergoes a first transition from the low-Wi
symmetric state to a diverging “D” state where the fluid
avoids the gap between the cylinders and flows symmet-
rically around their sides. The velocity field is qualitatively
similar to that for viscoelastic flow around a single obstacle
[7,40]. Further increasing Wi, the system undergoes a
second transition at Wi2 ≈ 50 to an asymmetric-diverging
“AD” state in which the fluid selects a single preferred path
either above [y > 0] or below [y<0] the pair of cylinders
[see Fig. 2(c)]. This randomly chosen bias is also similar to
that observed for viscoelastic shear-thinning fluids flowing
around a single cylinder [7,8,37].
For large G ¼ 0.603, the first transition at Wi1 results in

a converging “C” flow state where the fluid flows prefer-
entially between the cylinders, avoiding the gaps at their
sides [Fig. 2(e)]. In contrast to the small-G case, as Wi
increases there is no second transition at Wi2 and the C
state is maintained until the flow eventually becomes
time dependent at Wi ≫ Wi1. The nature of the time

FIG. 2. Evolution of velocity fields with Wi for the WLM
solution in channels with G ¼ 0.500 (a)–(c) and G ¼ 0.603 (d)–
(f). Panels (c1) and (c2) indicate the two possible states for G ¼
0.500 and Wi > Wi2.
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dependence is qualitatively similar to that previously
reported for a single cylinder [7] and will not be discussed
further here. For single isolated cylinders, the flow desta-
bilizes due to the accumulation of elastic tensile stress
along the curved streamlines close to the downstream
stagnation point [28,29,37], resulting in a small but finite
random sideways perturbation of the downstream wake.
If elasticity in the wake and shear thinning at the sides of
the cylinder are sufficient, a positive feedback mechanism
results in the growth of a steady flow asymmetry with
random handedness and described as a supercritical pitch-
fork bifurcation [8,37]. In the present case, the bifurcations
at each of the side-by-side cylinders at Wi1 are of opposite
handedness, giving rise to the flow patterns shown in
Figs. 2(b) and 2(e). This is due to the disparity in character-
istic shear rate between the intercylinder and the
cylinder-wall gaps. We note that a shear-thinning, but
non-shear-banding viscoelastic polymer solution shows
analogous flow behavior to that seen in Fig. 2 (Figs. S2
and S3 [45]).
We quantify the critical flow behavior using two dimen-

sionless flow asymmetry parameters I0 and I00:

I0 ¼
1
2
ðūþ þ ū−Þ − ū0

1
2
ðūþ þ ū−Þ þ ū0

and I00 ¼ ūþ − ū−
ūþ þ ū− þ ū0

: ð1Þ

Here, ūþ, ū−, and ū0 are the average values of u in
the upper, lower, and intercylinder gaps, respectively
(see Fig. 1). I0 serves as the order parameter to quantify
the first transition from the low-Wi symmetric state to either
the D or C states [Figs. 2(b) and 2(e)]. I0 ¼ 0 when the
average flow through the upper and lower gaps equals the

flow through the center. Transition to the D state results in
I0 > 0, since ū0 decreases. Transition to the C state results
in I0 < 0, since ū0 increases. I00 serves as the order
parameter to quantify the second transition between the D
and the AD states. I00 ¼ 0 in the D state, since ūþ ¼ ū−
[Fig. 2(b)]. In the AD state, fluid flows preferentially
through either the upper or lower gap [Fig. 2 (c)], resulting
in I00 > 0 or I00 < 0, respectively.
The asymmetry parameters I0; I00 are shown versus Wi in

Fig. 3 for various values of G and are fitted with a quartic
(double-well) Landau-type potential minimized as

Wi ¼ Wicðgϵ2 þ hϵ−1 þ 1Þ; ð2Þ

where Wic ¼ Wi1 or Wi2 is the critical Weissenberg
number for the bifurcation, and the order parameter ϵ ¼
I0 or I00, respectively. In all the fits, the growth rate
coefficient g is order unity, and the asymmetric term in
h quantifies system imperfections that bias a transition to a
favored branch. The phenomenological Landau model for
equilibrium phase transitions has long been found to
provide a good description of bifurcation phenomena in
driven nonequilibrium systems including Newtonian and
viscoelastic flows [5,7,51,52]. Equation (2) describes
imperfect forward (supercritical) pitchfork bifurcations
without hysteresis.
For small G ¼ 0.500, the first transition in I0 [Fig. 3(a)]

occurs at Wi1 ≈ 13, and is a slightly imperfect (h ≈ −0.016)
supercritical pitchfork bifurcation where the favored branch
(I0 > 0) gives diverging (D) flow. The unfavored (I0 < 0)
branch was never observed, but its hypothetical existence is
indicated in Fig. 3(a) by the dotted line. With increasing

FIG. 3. Flow asymmetry parameters I0, I00, and I ¼ I0 þ I00 versus Wi for microfluidic channels with (a)–(c) G ¼ 0.500, (d)–(f)
G ¼ 0.603, and (g)–(i) G ¼ 0.588. Symbols indicate the qualitative flow states observed at high Wi for a given experiment: AD state
with I00 > 0 (up pointing triangles) or I00 < 0 (down pointing triangles), and C state (squares). The solid and dotted black curves are fits
of a fourth-order Landau potential to the data (see main text). Colored backgrounds in (c),(f), and (i) delineate the various flow states.
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Wi, I0 → 1, implying that almost no fluid passes between
the cylinders [as qualitatively evident from Fig. 2(b)].
The second transition in I00 [Fig. 3(b)] from the D state
to the asymmetric diverging (AD) state occurs at Wi2 ≈ 44.
The imperfection in this second bifurcation is very small
(h ≈ −0.0013). The favored branch gives I00 > 0, but the
unfavored I00 < 0 branch can also be reached and followed
by initiating the flow at a high Wi and subsequent
quasistatic reduction. The complete bifurcation diagram
showing the total asymmetry I ¼ I0 þ I00 versus Wi for
G ¼ 0.500 is shown in Fig. 3(c). The first bifurcation
results in I → 1. The second bifurcation splits I into two
branches, I → 1.5 or I → 0.5.
The behavior for G ¼ 0.603 is shown in Figs. 3(d)–3(f).

In this case, the first bifurcation occurs at Wi1 ≈ 20
[Fig. 3(d)]. The asymmetric term in Eq. (2) is positive
(h ≈ 0.033), resulting in a preferred transition from sym-
metric to converging (C) flow. With increasing Wi,
I0 → −1, indicating that nearly all of the fluid passes
between the cylinders [see Figs. 2(e) and 2(f)]. Since h
is relatively large, the negative I0 branch is strongly
preferred. The positive I0 branch [dotted line in Fig. 3(d)]
is never observed experimentally. When the system selects
the C state at the first transition, a second bifurcation is not
observed, and I00 ≈ 0 for all Wi [Fig. 3(e)]. The complete
bifurcation diagram for G ¼ 0.603 is shown in Fig. 3(f),
since I00 ≈ 0, I ≈ I0.
The data shown in Figs. 2, 3(a)–3(f) demonstrate two

disparate flow behaviors that are sensitive to the value of
G. The first bifurcation to either the D or C states is well
described as a supercritical pitchfork bifurcation quantified
by I0. The two states are different branches of the same
bifurcation and the value of G determines which branch is
selected by changing the sign of the asymmetric term (h) in
Eq. (2). This implies the existence of a specific intermediate
value of G at which the bifurcation of I0 should be perfect
(h ¼ 0) and the D or C states are equally likely.
By examining a range of intermediate values 0.56<G<

0.60, we confirmed this assumption, as exemplified
by Figs. 3(g)–3(i) for G ¼ 0.588. Here, increasing Wi
quasistatically from 0, the favored positive I0 branch (D
state) is observed [Fig. 3(g), triangles] on exceeding
Wi1 ≈ 20. However, the imperfection is sufficiently small
(h ≈ −0.007), that by quasistatic reduction of Wi from a
high value, the unfavored C state branch (squares) can also
be followed. From the D state, on exceeding Wi2 ≈ 66,
the second bifurcation to the AD state occurs to either
positive or negative I00 with almost equal likelihood in a
given experiment [Fig. 3(h), triangles] since h ≈ 0. The
complete bifurcation diagram for G ¼ 0.588 in Fig. 3(i)
shows the bistable coexistence of the C and D states for
Wi1 < Wi < Wi2. For Wi > Wi2, the system is tristable,
where the two AD branches and the C branch coexist.
The behavior observed in all 11 microchannels is

summarized in a flow stability diagram in Wi-G state

space (Fig. 4), where the plotted flow states and boundaries
were determined directly from the measured velocity fields.
For channels with small G≲ 0.560, the systems behave as
exemplified by Figs. 2(a)–2(c), 3(a)–3(c), with a first
bifurcation at Wi1 that is biased to the D state and a
second bifurcation at Wi2 to the bistable AD state with
either positive or negative I00. For large G≳ 0.595, the
systems behave as shown by Figs. 2(d)–2(f), 3(d)–3(f);
the bifurcation at Wi1 is biased to the C state (which is
maintained until the onset of time dependence at
Wi ≫ Wi1). For a narrow range of 0.560≲ G≲ 0.595,
beyond Wi1 it is possible to pass through a region of
bistability between the D and C states before entering a
tristable region beyond Wi2 comprising the bistable AD
state and the C state. It is assumed that the D∨C bistable
region meets the low-Wi symmetric region at a hypothetical
single point (Gc;Wi1) in the state space (red crossed circle,
Fig. 4) where the first bifurcation would be perfect (h ¼ 0).
To the left of this point, the diagonal boundary between the
D∨C and D regions reflects the increasing imperfection of
the first bifurcation with decreasing G. However, based on
our experiments, to the right of Gc the boundary between
the D∨C and the C states appears to be extremely abrupt. A
small increase in G > Gc causes a significant bias to the C
state in the first bifurcation. A special case arises for
G ¼ 0.565, where the tristable AD∨C region is reached
by passing through the bistable AD region, avoiding the
bistable D∨C region. Apparently, at this value ofG andWi,
the selected flow path can spontaneously switch from an
edge to the center gap, and vice versa for decreasing Wi.
By varying the geometric parameter space, we have

demonstrated the complex dynamical behavior for the flow
of a model Maxwell-type viscoelastic fluid past side-by-
side microcylinders. Although the flow states we report
appear to be rather general for shear-thinning viscoelastic

FIG. 4. Flow stability diagram in Wi-G state space. The dashed
lines and colored shades delineate between flow states.
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fluids [8,45], we note that the rheological parameters of the
test fluid (shear and extensional viscosity and relaxation
time) are expected to influence the intensity of the flow
asymmetry, the critical Wi values, and also the detailed
form of the phase diagram. A proper comparison between
different model rheological fluids will be instructive and
enlightening.
There is a growing body of literature revealing impor-

tant inertialess bifurcations to bistable flow states in
microfluidic circuits (see, e.g., Refs. [53–55]), including
the supercritical transitions in viscoelastic flows through
cross slots [3,4] and around single cylinders [7,37]. Here,
despite the modest increase in geometrical complexity
from a single cylinder, the dynamical behavior is signifi-
cantly richer and shows how a combination of bifurcations
can lead to multistability. Our results suggest a new
interpretation for how viscoelastic fluids select preferred
flow paths through ordered and disordered porous arrays
(see, e.g., Ref. [17]), indicating that each individual
obstacle should be considered as a bifurcation point,
which can be perfect (ordered) or imperfect (disordered),
depending on the spacing between nearest neighbor array
elements.
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