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Topological notions in physics often emerge from adiabatic evolution of states. It not only leads to
fundamental insight of topological protection but also provides an important approach for the study of
higher-dimensional topological phases. In this work, we first demonstrate the transfer of topological
boundary states (TBSs) across the bulk to the opposite boundary in an acoustic waveguide system. By
exploring the finite-size induced minigap between two TBS bands, we unveil the quantitative condition for
the breakdown of adiabaticity in the system by demonstrating the Landau-Zener transition with both theory
and experiments. Our results not only serve as a foundation of future studies of dynamic state transfer but
also inspire applications leveraging nonadiabatic transitions as a new degree of freedom.
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The emergence of topological effects in physics is often
underlain by adiabatic cyclic variation of a specific set of
parameters, which leads to quantized Berry phases that give
rise to various types of topological invariants [1,2]. Perhaps
the best-known example is a Chern insulator, which is
characterized by a topological invariant known as the
TKNN number (or in many cases, the Chern number)
[3]. Underpinned by the fundamental universality of top-
ology, recent efforts have identified that similar physical
phenomena not only exist in solid-state electronic systems
but also in photonics and electromagnetism [4,5], elastics,
and acoustics [6,7].
Thouless pumping is another important manifestation of

topology in physics [8,9]. It is regarded as a dynamical
version of the two-dimensional (2D) quantum Hall effect
[10–14]. Recent observations ofThouless pumping in optical
lattice [15–17], photonic waveguide arrays [18–21], and
elastic plates [14,22] show that dynamic evolution not only
reveals topological insights of state evolution but also is a
powerful method for studying higher-dimensional topologi-
cal physics [19,23]. However, the robust dynamic pumping
requires adiabatic variation of phase-space parameters.
Deviation from adiabatic conditions will inevitably cause
undesired states to be populated, and eventually the break-
down of the outcome [24]. However, despite its fundamental
importance, nonadiabatic transition in topologically related
phenomena remains largely unexplored so far.
In this Letter, we present a theoretical and experimental

study of nonadiabatic transition in the dynamic evolution of
acoustic topological boundary states (TBSs) in a commen-
surate Harper model [25]. Two TBSs localized at opposite
boundaries can evanescently couple in a finite-sized system
in the formation of a minigap [26], which we exploit for the
investigation of the breakdown of adiabaticity. We show

that such a breakdown follows the Landau-Zener model
[27–29], wherein the adiabatic condition is linked to the
rate of parameter modulation as well as the size of the TBS
gap. Our work also presents the successful realization of the
TBS transfer, which has not yet been achieved for sound
waves. The results also offer insights to applications relying
on the adiabatic evolution of states and open nonadiabatic
transitions as a new degree of freedom for controlling the
propagation of classical waves.
We consider a finite chain shown in Fig. 1(a), described

by a commensurate Harper model [25]

HðϕÞ ¼
XN
m

½f0 þ σλ cosð2πbmþ ϕÞ�jmihmj

þ
XN−1

m

tjmihmþ 1j þ H:c:; ð1Þ

where m labels the sites, t is the hopping coefficient, N is
the total number of sites in the finite chain, σ ¼ �1 is a
degree of freedom. The onsite terms are periodically
modulated as f0 þ σλ cosð2πbmþ ϕÞ: Here, λ is the
modulation amplitude and b ¼ 1

3
is the modulation fre-

quency, and the parameter ϕ serves as a synthetic dimen-
sion of the system. Two eigenspectra are plotted as
functions of ϕ, two band gaps are bridged by two chiral
TBSs that are protected by nontrivial Chern number C
computed in the kϕ plane, as shown in Fig. 1(b). The
relative locations of the two TBSs on the ϕ axis are
drastically different, depending on the total site number
N. When N ¼ 3n with n being an integer, the two TBSs
intersect, and a minigap is opened due to a finite-sized
effect of the chain (left panel) [30]. But if N ¼ 3n − 1, the
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two TBSs are symmetric about ϕ ¼ 0. This can be seen by
a unitary transformation that flips the sign of ϕ: HðϕÞ ¼
P−1Hð−ϕÞP, where P is a unitary operator with Pij ¼ 1

for iþ j ¼ N þ 1.
The Harper model can be realized using coupled acoustic

cavities [31,32], which can be extended to a waveguide
array [33,34], as schematically shown in Figs. 1(c) and
1(d). The system consists of N rectangular air-filled wave-
guides coupled by a thin sheet of air. The cross section of
the array reproduces the Harper model [Eq. (1)] with a
specific ϕ. Here, we employ the first-order guiding mode
[Fig. 1(d)], denoted jψ jðϕÞieikzz, where jψ jðϕÞi is an
eigenfunction of HðϕÞ with a corresponding eigenfre-
quency fH;jðϕÞ, with j labeling the bands. When the
working frequency is fixed at fw, the propagation constant

is kz;jðϕÞ ¼ ð2π=cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2w − f2H;jðϕÞ

q
, where c is the speed of

sound. Equation (1) can then be transformed to

HðϕÞ ¼ ΨKzΨ†: ð2Þ

Here Ψ ¼ ðjψ1ðϕÞi; jψ2ðϕÞi…jψNðϕÞiÞ, is a column
matrix formed by all eigenvectors of HðϕÞ; Kz ¼P

N
j kz;jðϕÞjjihjj. Equation (2) shares the same set of

eigenfunctions as Eq. (1), but the corresponding eigenval-
ues become kz;j, as shown in Fig. 1(e). It follows that ϕ
directly links to kz. We can then enforce the adiabatic
variation of ϕ by slowly modulating the waveguide along
the z direction [35]:

−i∂zjψðzÞi ¼ HðzÞjψðzÞi; ð3Þ

which is a Schrödinger-type equation. Since the first-order
guiding mode resembles a dipole in its cross-sectional
profile [Fig. 1(d)], the adiabatic variation of ϕ, which
affects the onsite frequency [Eq. (1)], can be implemented
by a continuous change of the height of each waveguide, as
schematically shown in Fig. 2(a).
Changing the total number of waveguides N leads to

entirely different state transfer processes, as shown in
Figs. 1(b)–1(f). With N ¼ 3n − 1, the transfer of the
TBS to the opposite boundary must connect through a
bulk band near ϕ ¼ 0 or π. This implies that ϕ must be
driven across a rather large range to achieve well-localized
TBS as end states [35]. On the contrary, when N ¼ 3n, the
TBS bands intersect at ϕ ¼ −π=3 (in the lower gap). In a
finite-size system, these TBSs couple evanescently and a
small gap opens near the crossing points [30]. In this case,
the TBS can transfer to the opposite boundary without
involving any bulk states, as shown in Fig. 1(f). It also has
the advantage of requiring the variation of a much smaller
range of ϕ. However, as we will demonstrate next, the small
size of the TBS gap means that such an effect is sensitive to
the condition of adiabaticity and therefore offers a unique
opportunity for studying nonadiabatic transition.
We investigate a nine-waveguide array whose height is

modulated according to hm¼20þ5cosð2mπ=3þϕÞmm
[Fig. 2(a)]. The hopping is achieved by air layer with a
thickness w ¼ 3 mm, which is chosen to generate a
properly sized TBS gap. The two waveguides at
the boundaries have an additional height correction of
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FIG. 2. (a) A schematic drawing of the acoustic waveguide
array with modulated height. The modulation range is shown by
the red section. (b) Propagation constant kz as a function of ϕ near
ϕ ¼ −π=3 at a working frequency fw ¼ 9.5 kHz. The solid
curves (dots) are results based on the two-band model (finite-
element simulations). (c) The field distribution of the initial state
(star) and the two possible final states (circles). (d) The weighting
of left and right TBSs as functions of modulation length zm. The
solid curves are the direct results of the Landau-Zener model, and
the open circles are from numerical simulations.
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FIG. 1. (a) A schematic of a finite Harper chain. The onsite
frequency is periodically modulated. (b) The calculated eigens-
pectra as functions of ϕ. The parameters are f0 ¼ 9101.5 Hz,
t ¼ −0.082f0, λ ¼ −2t. The left (right) panel corresponds to a
chain withN ¼ 60 (59) sites and σ ¼ −1ðþ1Þ. (c),(d) Schematics
of an acoustic waveguide array for realizing the finite Harper
chain. The color map in (d) shows the cross-sectional profile of
the guiding mode. (e) The calculated eigenspectra of the
Hamiltonian in Eq. (2), in which the eigenvalues are the
propagation constant kz. The states at A, B, and C in (e) are
shown in (f).
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Δh ¼ −2 mm to compensate for the perturbation to onsite
frequency induced by the coupling [32]. Mode analysis
using COMSOL Multiphysics at a working frequency
fw ¼ 9.5 kHz reveals that the TBS gap has a size of
Δkz ¼ 4.66 m−1, as shown Fig. 2(b). In the vicinity of
ϕ ¼ −π=3, the TBS gap can be modeled by a two-level
effective Hamiltonian near kz ¼ 53.7 m−1,

HeðδϕÞ ¼
�−αδϕ Γ

Γ αδϕ

�
: ð4Þ

Here, Γ ¼ Δkz=2 is determined by the gap size and
α ¼ 70.4 m−1 is a fitting parameter. The bases of He are
jψLi and jψRi, i.e., the TBSs localized at the left and right
boundaries, respectively. The eigenvalues of He are plotted
as the solid curves in Fig. 2(b), which are in excellent
agreement with the results from mode analysis (dots). The
weightings of jψLi and jψRi are shown by the blue and red
colors. The initial state is jψRi at ϕ ¼ −0.38π (marked by
the red star). The final state jψfi is a combination of two
boundary states jψRi and jψLi. The two possible routes of
state evolution across the TBS gap are represented by the
dashed arrows in Fig. 2(b). When it follows the red path,
jψRi, component dominates during the TBS transfer
process, and the final state remains localized on the right
boundary [Fig. 2(c)]. Alternatively, when it is pumped
along the blue path, the jψLi component dominates the
final state, which induces field localization on the left
boundary [Fig. 2(c)].
The composition of the final state can be predicted by the

Landau-Zener model [27,36], which depends on the TBS
gap size Δkz and the rate of parameter evolution. In our
system, the gap size is apparently fixed. The evolution rate
Δϕ=zm is determined by, i.e., the ratio of the parameter
range Δϕ ¼ 0.1π and the length of the modulated

waveguides zm [the red section in Fig. 2(a)]. Then the
composition of the final state is given by jψfi ¼LðzÞjψLiþ
RðzÞjψRi, with LðzÞ and RðzÞ satisfying

−i d
dz

�
LðzÞ
RðzÞ

�
¼

�
βz Γ
Γ −βz

��
LðzÞ
RðzÞ

�
; ð5Þ

where β ¼ αðΔϕ=zmÞ characterizes the adiabaticity. The
state transfer begins with the state dominantly at jψRi so
that the initial condition is ð0; 1ÞT . From Eq. (5), we can
work out the final state as a function of zm, i.e., R2ðzmÞ ¼
e−πΓ2=β and L2ðzmÞ ¼ 1 − e−πΓ2=β. We plot the final state
weighting in Fig. 2(d) as functions of zm. It is seen that
R2ðzmÞ and L2ðzmÞ cross at zt ¼ αΔϕ ln 2

πΓ2 ¼ 0.899 m. We
denote this to be the transition point. The physics behind
can be understood straightforwardly. With a fixed Δϕ, the
length of waveguides determines the variation rate. When
zm ≫ zt, i.e., the waveguide array is long so that the state
evolution is sufficiently slow to be adiabatic and the state
remains on the same band. However, when the same
process is enforced with a waveguide array shorter than
zt, the variation is fast so that adiabaticity is not satisfied.
Then the upper TBS band is considerably populated, and
the final state has a large component of jψRi. Hence we
reach the conclusion that the energy of the final state
redistributes according to the total length of modulation
zm [35].
We simulate four configurations to verify our analytical

predictions. The numerical model is schematically shown
in Fig. 3(a), in which a perfectly matched layer is used to
eliminate reflection at the output. (In the experiments,
the output is an open end that generates some reflection.
However, this does not affect the state transfer
results owing to the reciprocity of our system. See more
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FIG. 3. (a) The model used in finite-element simulations. The parameters are d ¼ 4, w ¼ 3, and a ¼ 8 mm. Perfectly matched layers
with a length zpml ¼ 0.1 m are added to the output ends to eliminate the reflection. (b)–(d) Simulation results for configuration I (b), II
(c), III (d), IV (e). The red stars mark the source locations.
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discussions in the Supplemental Material [35]). The simu-
lated result of configuration I (zIm ¼ 0.2 m), shows that the
initial and final states are both a TBS localized at the same
boundary. For configuration II (zIIm ¼ 0.899 m), the result
[L2ðzmÞ ¼ 0.54] shows an almost equal distribution of
acoustic energy at the left and right boundaries. For
configuration III (zIIIm ¼ 1.6 m), most acoustic energy in
the final state is localized at the left boundary. Further
increase of zm leads to the domination of jψRi in the final
state. These results shown in Figs. 3(b)–3(e) tally well with
the theory. It is also noteworthy that in configurations II, III,
and IV, the energy indeed is tunneled through the bulk to
excite the left TBS without involving any bulk states, which
is anticipated in our analysis. We remark that the avoidance
of bulk states potentially makes the TBS transfer process
more resilient against imperfections and loss [18].
We have verified these findings in experiments. Two

configurations of waveguide arrays with different modu-
lation lengths: zIm ¼ 0.2 and zIIIm ¼ 1.6 m were fabricated,
as shown in Fig. 4(a). The acoustic waveguide arrays were
precision machined from a block of aluminum. Frequency
scan covering 9.5–9.7 kHz with a 2-Hz interval was
performed by using a waveform generator (Keysight
33500B) that generates two antiphase sinusoidal signals
to drive two identical loudspeakers (Hivi TN25) through
audio power amplifiers. The loudspeakers formed a dipole
source and were connected to waveguide 9 at the input. We
then used a 3 mm microphone (RS-PRO 780-0734) to
measure the acoustic responses in all waveguides. The
data are recorded by a digital oscilloscope (Keysight
DSO2024A). For each waveguide, we measured both the
amplitude and phase at the top and the bottom and extracted
the dipole component. For configuration I with zIm < zt, the
output profile shows that final state is dominantly jψRi

[Fig. 4(c)]. The results of configuration III with zIIIm > zt are
shown in Fig. 4(d). We have measured acoustic intensity
distributions at different locations. It is clearly observed
that the acoustic energy localizes at waveguide 9 near the
input, and gradually transfer across the bulk to waveguide 1
at the output end. Also, the acoustic fields in the bulk
region remain at a very low amplitude throughout the TBS
transfer process, indicating that no bulk state is involved,
which conforms well with our prediction. Note that due to
the presence of dissipation, the results are normalized at
different lengths. The constraints in both fabrication
capability and laboratory space prevent the experiments
on even longer waveguides. Nevertheless, our results
already demonstrate the successful transfer of TBS and
the nonadiabatic transition that follows the Landau-
Zener model.
In summary, we have successfully demonstrated the

transfer of TBSs in acoustics. Leveraging this acoustic
system, we quantitatively identified the nonadiabatic tran-
sition condition, which could lead to the reliable control of
adiabaticity that benefits the investigation of topological
phenomena by dynamic processes. Our approach can be
extended to higher dimensions and can benefit other
physical systems, such as mechanical vibrations, electro-
magnetism, and electrical circuitries. Our work also shows
that nonadiabatic transition can be exploited as a new
degree of freedom for wave manipulations in topological
and nontopological systems, which can open new appli-
cation potentials such as the Landau-Zener-Stückelberg
interferometry [37], asymmetric guiding mode switching
[38], wave splitting, multiplexing, and demultiplexing of
waveguide channels [39].
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