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Bounds on transport represent a way of understanding allowable regimes of quantum and classical
dynamics. Numerous such bounds have been proposed, either for classes of theories or (by using general
arguments) universally for all theories. Few are exact and inviolable. I present a new set of methods and
sufficient conditions for deriving exact, rigorous, and sharp bounds on all coefficients of hydrodynamic
dispersion relations, including diffusivity and the speed of sound. These general techniques combine
analytic properties of hydrodynamics and the theory of univalent (complex holomorphic and injective)
functions. Particular attention is devoted to bounds relating transport to quantum chaos, which can be
established through pole-skipping in theories with holographic duals. Examples of such bounds are shown
along with holographic theories that can demonstrate the validity of the conditions involved. I also discuss
potential applications of univalence methods to bounds without relation to chaos, such as for example the
conformal bound on the speed of sound.
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Introduction.—The existence of bounds on properties of
transport, such as diffusion, has persistently enthralled
physicists concerned with time-dependent collective dynam-
ics. Numerous bounds that improved our understanding of
quantum and classical dynamics have been proposed.
Among them is Sachdev’s relaxation time bound [1], the
Mott–Ioffe–Regel limit of metallic conductivity [2,3], lower
bounds on diffusion and viscosity [4–13], upper bounds on
diffusion [9,14,15], and a bound on the speed of sound
[16,17]. These bounds are usually heuristic and rely on basic
physical principles such as the uncertainty principle and
causality. Exact inequalities, even for restricted classes of
theories, are rare. An example is Prosen’s bound on diffusion
[18]. Holographic methods to bound conductivities in
disordered theories were developed in [19,20]. Holo-
graphic advances in quantum chaos then led to the exact
Maldacena–Shenker–Stanford bound on quantum Lyapunov
exponents that follows from arguments of analyticity and
complex analysis [21]. Another bound on the growth of
weak (polynomial) quantum chaos was derived in [22].
Microscopic bounds, such as bounds on quantum chaos,

should imply sharp bounds on collective transport. The
purpose of this work is to introduce a new set of
mathematical techniques from a well-developed theory
of univalent functions, which allows for a rigorous

derivation of exact inequalities of that type on diffusivity,
the speed of sound, and all higher-order coefficients of
hydrodynamic dispersion relations. The methods establish
sufficient analyticity and microscopic conditions that lead
to several long-discussed types of bounds. Due to their
generality, univalence methods can also be applied to
derive bounds without any reference to chaos.
Univalent functions.—A univalent (or schlicht) function

fðzÞ is a complex holomorphic injective function. The
condition of injectivity demands that fðz1Þ ≠ fðz2Þ for all
z1 ≠ z2. Henceforth, all considered fðzÞwill be univalent in
some simply connected region U ⊂ C. By the Riemann
mapping theorem, it is then possible to map U to an open
unit disk D ¼ fζjjζj < 1g in the complex ζ plane by a
holomorphic invertible conformal map φ: ζ ¼ φðzÞ and
z ¼ φ−1ðζÞ. As is conventional, we will use the normali-
zation fðζ ¼ 0Þ ¼ 0, and f0ðζ ¼ 0Þ ¼ 1 for functions in
the ζ plane. All such functions admit a power series
representation of the following form:

fðζÞ ¼ ζ þ
X∞
n¼2

bnζn: ð1Þ

The series is guaranteed to converge for all jζj < 1.
Locally, fðzÞ is univalent if f0ðzÞ ≠ 0. However, proving

local univalence at every z ∈ U does not guarantee global
univalence. Instead, one of numerous sufficient conditions
for univalence must be employed [23,24]. Once univalence
is established and we have mapped U → D, then we can
resort to theorems bounding univalent functions on ζ ∈ D,
such as the growth theorem:
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jζj
ð1þ jζjÞ2 ≤ jfðζÞj ≤ jζj

ð1 − jζjÞ2 ; ð2Þ

and the celebrated de Branges theorem (originally
called the Bieberbach conjecture) [25] constraining each
coefficient of the power series (1):

jbnj ≤ n; for all n ≥ 2: ð3Þ

The inequalities in Eq. (3) and the growth theorem (2) are
saturated by the Koebe function (and its rotations in ζ),

fKðζÞ ¼
ζ

ð1 − ζÞ2 ¼
X
n¼1

nζn; ð4Þ

which conformally maps D → Cnð−∞;−1=4�.
We will use the condition whereby if Ref0ðzÞ > 0 in any

convex U ⊂ C, then fðzÞ is univalent in U [26,27]. If,
moreover, after φ: U → D, Ref0ðζÞ > 0, then fðζÞ satisfies
stronger versions of the theorems in Eqs. (2) and (3) [28]:

−jζj þ 2 ln ð1þ jζjÞ ≤ jfðζÞj ≤ −jζj − 2 ln ð1 − jζjÞ; ð5Þ

jbnj ≤
2

n
; for all n ≥ 2: ð6Þ

Hydrodynamics.—Hydrodynamics is an effective theory
of collective late-time and long-range excitations in fluids
governed by conserved quantities such as energy, momen-
tum, and charges [29–40]. Linearized hydrodynamics
predicts the structure of dispersion relations ωðq2Þ, where
ω is the frequency and q2 is the momentum (squared) of a
collective mode: diffusion or sound. In theories preserving
spatial rotations, classical [41] ωðq2Þ are infinite Puiseux
series in q2 [44,45]:

ωdiffðz≡ q2Þ ¼ −i
X∞
n¼1

cnzn; ð7Þ

ω�
soundðz≡

ffiffiffiffiffi
q2

q
Þ ¼ −i

X∞
n¼1

ane�ðiπnÞ=2zn; ð8Þ

where all an, cn ∈ R. We treat the argument z as complex
(z ∈ C) in both Eqs. (7) and (8). We have c1 ¼ D
(diffusivity) and a1 ¼ vs (the speed of sound). Each series
converges for jzj < R≡ jz�j with z ¼ z� being the first
critical point of the associated complex curve [44–46].
Each fully analytically continued function ωðzÞ is holo-
morphic in the region z ∈ H ⊂ C, where H contains
jzj < R.
Different concepts of wave propagation speeds beyond

vs exist, such as the phase velocity vphðqÞ≡ ω=q, the front
velocity, and the group velocity vgðqÞ≡ ∂ω=∂q, where
q≡ ffiffiffiffiffi

q2
p

. Causality, for example, imposes certain con-
ditions on these speeds (see Ref. [51]). In an analogous

spirit, we will sometimes use properties of vg to define the
univalence region of hydrodynamics U.
General bounds.—A hydrodynamic dispersion relation

ωðzÞ is by Puiseux’s theorem invertible at z ¼ 0, and thus
locally univalent at z ¼ 0 [44,45]. Beyond including z ¼ 0
in all univalent regions U ⊆ H, we assume that U also
contains a point z ¼ z0 where ω0 ≡ ωðz0Þ is known. U
need not be maximal. A convenient way to choose U is
through the sufficient condition Ref0ðzÞ > 0, where
fdiffðzÞ ¼ iωdiffðzÞ and fsoundðzÞ ¼ ωsoundðzÞ. This implies
univalence for U ¼ fzjjzj < min½jzgj; R�g, where

diffusion∶ zg ¼ q2g ≡minq2jRevgImq ¼ ImvgReq; ð9Þ

sound∶ zg ¼ qg ≡min qjRevg ¼ 0; ð10Þ

expressed through the properties of the group velocity. If vg
vanishes at jzgj smaller than those in Eqs. (9) and (10), then
univalence is lost locally due to f0ðzgÞ ¼ 0. We have

qg ≡minqjvg ¼ 0: ð11Þ

Using a conformal map φ: U → D with φðzÞ ¼ ζ that
preserves the origin [i.e., φð0Þ ¼ 0], we then define

fdiffðζÞ≡ iωdiffðφ−1ðζÞÞ
D∂ζφ

−1ð0Þ ¼ ζ þ
X∞
n¼2

bdiffn ζn; ð12Þ

fsoundðζÞ≡ ωþ
soundðφ−1ðζÞÞ
vs∂ζφ

−1ð0Þ ¼ ζ þ
X∞
n¼2

bsoundn ζn: ð13Þ

Both Eqs. (12) and (13) have the form of Eq. (1). The
growth theorem (2) applied at ζ0 ≡ φðz0Þ now yields lower
and upper bounds on diffusivity and the speed of sound:

jω0jð1 − jζ0jÞ2
jζ0jj∂ζφ

−1ð0Þj ≤ ðD∨vsÞ ≤ jω0jð1þ jζ0jÞ2
jζ0jj∂ζφ

−1ð0Þj ; ð14Þ

where ðD∨vsÞmeans eitherD or vs, depending on whether
we used Eq. (12) or Eq. (13). If, in addition to univalence,
Ref0ðζÞ > 0 for jζj < 1, then Eq. (5) gives

jω0j
j∂ζφ

−1ð0Þj ln½e−jζ0j=ð1 − jζ0jÞ2�
≤ ðD∨vsÞ

≤
jω0j

j∂ζφ
−1ð0Þj ln ½e−jζ0jð1þ jζ0jÞ2�

: ð15Þ

To bound higher-order coefficients, we use the de Branges
theorem (3) on each term of the series (12) or (13). This
establishes a chain of inequalities on cn or an in terms of all
cm or am with m < n. For a diffusive dispersion relation (7),
we first use jb2j ≤ 2 to bound c2:
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����c2 þD
2

∂2
ζφ

−1ð0Þ
½∂ζφ

−1ð0Þ�2
���� ≤ 2D

j∂ζφ
−1ð0Þj ; ð16Þ

further eliminatingD through Eq. (14). Next, jb3j ≤ 3 is used
to bound c3 and so on for all cn≥4. If Ref0ðζÞ > 0, then the
bound (16) has another factor of 1=2 on the right-hand side
due to jb2j ≤ 1 in Eq. (6). An analogous procedure can be
used for bounding an by vs and φ. All bounds are determined
purely in terms of a single known ω0ðz0Þ and the chosen
original region of univalence U through the conformal map
φ: U → D.
Quantum chaos and pole-skipping.—Of particular

interest are bounds that stem from the underlying micro-
scopic quantum chaos. While the general relation between
transport and chaos is unknown, precise connection
has been established through the phenomenon of
pole-skipping in quantum field theories with a large
number of local degrees of freedom (large-N theories)
that possess a classical gravitational holographic dual
[52–55].
Pole-skipping is an indeterminacy of two-point functions

associated with dispersion relations (7)–(8). In the longi-
tudinal channel of energy-momentum fluctuations (e.g.,
sound or energy diffusion), pole-skipping implies

ω0ðq2
0Þ ¼ iλL; q2

0 ¼ −λ2L=v2B: ð17Þ

Hence, for such modes, we have q0 ¼ iλL=vB. Here, λL is
the maximal Lyapunov exponent λL ¼ 2πT, T is the
temperature, and vB is the butterfly velocity characterizing
the exponential growth of the out-of-time-ordered correla-
tor used to probe chaos eλLðt−jxj=vBÞ [21,56]. In neutral
theories, a related expression exists also for transverse
fluctuations (e.g., momentum diffusion) [45,57]:

ω0ðq2
0Þ ¼ −iλL; q2

0 ¼ λ2L=v
2
B: ð18Þ

In charged theories, pole-skipping in Eq. (18) at ω0 ¼ −iλL
generically exhibits a more complicated q0 [58]. Since the
pole-skipping points can be easily computed from dual
gravity, and they relate chaos to transport, we will use them
as ω0ðz0Þ in most bounds below.
Diffusion I: maximal univalence.—In our first, simple,

and very special example, assume that a diffusive
dispersion relation ωðzÞ ¼ ωdiffðzÞ [cf. Eq. (7)] is max-
imally univalent (U ¼ H) and holomorphic on the entire
z ∈ C except at a branch point z� and at z ¼ ∞. We define
ω� ≡ ωðz�Þ. Under Imz → −Imz, Reω is odd and Imω is
even. To have a single z�, we need Reω� ¼ 0; hence,
z� ∈ R. For concreteness, we take z� > 0 and choose the
branch cut so that U ¼ Cn½z�;∞Þ. R ¼ z� is the radius of
convergence of the hydrodynamic series (7). We first use a
rescaling Möbius transformation to map z� → −1=4, keep-
ing z ¼ ∞ at∞. The branch cut is now chosen to lie along
ð−∞;−1=4�. Next, we use an inverse of the Koebe function

(4) to map Cnð−∞;−1=4� → D. The full conformal map φ:
U → D is thus

ζ ¼ φðzÞ ¼ z − 2z� þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2� − zz�

p
z

; ð19Þ

z ¼ φ−1ðζÞ ¼ −4z�fKðζÞ ¼ −
4z�ζ

ð1 − ζÞ2 ; ð20Þ

with ∂n
ζφ

−1ð0Þ ¼ −4n2ðn − 1Þ!R. Using the pole-skipping
relations in Eq. (17) or Eq. (18), the diffusivity bounds (14)
become

z0 ¼ −
λ2L
v2B

< 0∶
v2B
λL

≤ D ≤
v2B
λL

þ λL
R
; ð21Þ

0 < z0 ¼
λ2L
v2B

< R∶
v2B
λL

−
λL
R

≤ D ≤
v2B
λL

: ð22Þ

Since ½z�;∞Þ ∉ U, we do not consider z0 ≥ R.
Equations (21) and (22) correspond to the longitudinal
(energy diffusion) and, assuming Eq. (18), the transverse
(momentum diffusion) channels, respectively. The inequal-
ities are fixed by pole-skipping and the radius of con-
vergence. The lower bound in Eq. (21) and the upper bound
in Eq. (22) have the form of the relation between D and
v2B=λL first noticed by Blake [6]. Moreover, our results
imply that if a univalent diffusive ωðzÞ is entire (holomor-
phic everywhere except at infinity, so that R → ∞), then
D ¼ v2B=λL identically. In terms of quasihydrodynamics
[59], small R is related to the relaxation time set by the
leading gapped mode. Using Eq. (16) for general R, we can
now find bounds on c2 (a third-order hydrodynamic
coefficient [60,61]):

0 ≤ c2 ≤
D
R
: ð23Þ

The upper bound from either Eq. (21) or Eq. (22) eliminates
D from Eq. (23). Simple algebraic manipulations give
further bounds on c3, c4, and so on. If we can take R → ∞,
then c2 ¼ 0. Moreover, all cn>2 ¼ 0 in this limit. Hence,
for entire univalent ωdiffðzÞ, the dispersion relation trun-
cates at the first order for all q2, with D fixed by pole-
skipping:

ωdiffðq2Þ ¼ −iDq2 ¼ −i
v2B
λL

q2: ð24Þ

A theory that exhibits diffusive properties discussed here
is a holographic model with broken translational invariance
and energy diffusion [62]. At a special self-dual point in the
parameter space of the background fields, symmetry
enhancement allows us to analytically find the exact diffusive
ωðzÞ ¼ −iπT½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðz=π2T2Þ

p
� [63]. Pole-skipping and
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hydrodynamic convergence in this theory were studied in
[45,54], finding z0 ¼ −8π2T2, v2B ¼ 1=2, and z� ¼ R ¼
π2T2. The bounds implied by Eqs. (21) and (23), along
with the bounds on c3, are then

v2B
λL

¼ 1

4πT
≤ D ≤ 9

v2B
λL

¼ 9

4πT
; ð25Þ

0 ≤ c2 ≤
D

π2T2
≤

9

4π3T3
; ð26Þ

−
27

32π5T5
≤ −

3D
8π4T4

≤ c3 ≤
D

π4T4
≤

9

4π5T5
: ð27Þ

The actual values of D ¼ 1=2πT, c2 ¼ 1=8π3T3, and c3 ¼
1=16π5T5 all satisfy the inequalities.
Diffusion II: Möbius transformations.—A general dif-

fusive dispersion relation has multiple branch points and
branch cuts. Generalizing the scenario in which U is
determined by the group velocity conditions in Eqs. (9)–
(11), let U of ωdiffðzÞ be a disk with a center at z ¼ zc and
two boundary points at z ¼ zc � zb (on its closure),
containing z ¼ 0 and z ¼ z0, and with zc ∈ C and
zb ∈ Rþ. U can be mapped to D by the Möbius trans-
formation ζ ¼ φðzÞ, which we choose to be

φðzÞ ¼ zbz
−zczþ z2b þ z2c

; φ−1ðζÞ ¼ ðz2b þ z2cÞζ
zb þ zcζ

; ð28Þ

satisfying φð0Þ ¼ 0 and mapping zc � izb → �i. We have
∂n
ζφ

−1ð0Þ ¼ n!ð−zcÞn−1ðz2b þ z2cÞ=znb. All of the above
bounds can now be easily constructed given specific z0,
zb, and zc. For example, Eq. (14) becomes

v2B
λL

����1 − zcz0
z2b þ z2c

����C− ≤ D ≤
v2B
λL

����1 − zcz0
z2b þ z2c

����Cþ; ð29Þ

where z0 ¼ �λ2L=v
2
B, depending on whether we use

Eq. (17) or Eq. (18). C� are defined as

C� ≡ ð1� jζ0jÞ2; jζ0j ¼
λ2L
v2B

zb
j − zcz0 þ z2b þ z2cj

: ð30Þ

Of particular interest are cases with zc ¼ 0 so that φ
rescales a disk of radius zb ¼ min½jzgj; R� to D. The only
nonzero ∂n

ζφ
−1ð0Þ is then ∂ζφ

−1ð0Þ ¼ zb, and bn ¼
zn−1b cn=D for n ≥ 2. The bounds on the coefficients of
the series (7) follow:

v2B
λL

�
1 −

1

zb

λ2L
v2B

�
2

≤ D ≤
v2B
λL

�
1þ 1

zb

λ2L
v2B

�
2

; ð31Þ

−
nD
zn−1b

≤ cn≥2 ≤
nD
zn−1b

: ð32Þ

If the pole-skipping z0 ∈ U, then by taking zb → z0, we can
at the very least establish that 0 ≤ D ≤ 4v2B=λL. Also, as
required, in the zb → ∞ limit, we again obtain the exact
dispersion relation (24). If univalence of fðζÞ is ensured by
Ref0ðζÞ > 0, then the bounds in Eqs. (31) and (32) are
improved:

λL=zb

ln e−λ
2
L=zbv

2
B=

�
1 − λ2L

zbv2B

�
2
≤ D ≤

λL=zb

ln e−λ
2
L=zbv

2
B

�
1þ λ2L

zbv2B

�
2
;

ð33Þ

−
2D
nzn−1b

≤ cn≥2 ≤
2D
nzn−1b

: ð34Þ

If zb → ∞, ωdiffðq2Þ still reduces to the form in Eq. (24).
To demonstrate the existence of such theories, we consider

momentum diffusion in two strongly coupled large-N
theories at finite temperature: 3d worldvolume theory of
M2-branes and 4d N ¼ 4 supersymmetric Yang-Mills
(SYM) theory. Diffusive ωdiffðzÞ is determined by dual
transverse metric fluctuations in 4d [64] and 5d [65]
Einstein-Hilbert theories with a negative cosmo-
logical constant and anti-de Sitter–Schwarzschild black
brane backgrounds. We check numerically that in both
theories, Ref0ðzÞ > 0 on their respective disks of hydro-
dynamic convergence, thereby establishing univalence
for jzj < zb ¼ R. For the N ¼ 4 SYM diffusion, we depict
this in Fig. 1. The 3d M2-brane case qualitatively matches
the plot in Fig. 1, with R ≈ 69.423T2, λL¼2πT,
and vB ¼ ffiffiffi

3
p

=2 [66]. In 4d N ¼ 4 SYM theory,
R ≈ 87.800T2, λL ¼ 2πT, and vB ¼ ffiffiffiffiffiffiffiffi

2=3
p

[44,45]. Given
these values, we can numerically verify the validity of the
bounds in Eqs. (33)–(34). For example, Eq. (33) evaluates to

0.046
T

≤ D ¼ 1

4πT
≈
0.080
T

≤
0.201
T

. ð35Þ

FIG. 1. The univalence condition Ref0ðζÞ, with ζ ¼ jζjeiϕ,
plotted as a function of ϕ for momentum diffusion in N ¼ 4
SYM theory. The color gradient indicates different jζj, from jζj ¼
0 (red) to jζj ¼ 0.92 (blue). We find that Ref0ðζÞ > 0 for all
jζj < 1, with jζj ¼ 1 mapped by φ from jzj ¼ R.
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Moreover, the bounds become extremely tight as n grows.
Assuming that the series coefficients cn become of the order
of the bounds as n → ∞ is consistent with the ratio test for
convergence then giving limn→∞ jcn=cnþ1j ¼ zb, which is
the radius of convergence of Eq. (7).
Sound.—By extending our holographic analysis to sound

in the N ¼ 4 SYM theory, we find that Ref0ðzÞ≯0
on the hydrodynamic convergence disk jzj < R, where
R ¼ 2

ffiffiffi
2

p
πT ≈ 8.886T [44,45]. Instead, Ref0ðzÞ > 0 for

jzj < jzgj < R, with zg ¼ qg determined by the local con-
dition in Eq. (11). We depict the univalence condition in
Fig. 2. Numerically, we find that zg ≈ −3.791iT. Since zg
lies within the hydrodynamic radius of convergence,
its value can be crudely approximated by conformal
first-order hydrodynamics: zg ≈ −3ivs=4D ¼ −5.441iT
with vs ¼ 1=

ffiffiffi
3

p
and D ¼ 1=4πT.

A crucial difference between this case and the diffusion
above is that the pole-skipping z0 ¼ iλL=vB [cf. Eq. (17)] is
no longer in the jzj < jzgj disk of univalence U (i.e.,
jzgj < jz0j ¼ λL=vB ≈ 7.695T). However, it can be checked
numerically that another univalent disk z ∈ U can be
chosen with zc ≈ 2.548iT and zb ≈ 6.338T [cf. Eq. (28)].
The bounds on ωsoundðzÞ then follow from Eqs. (14) and (3)
[not Eqs. (15) and (6), as Ref0ðζÞ≯0 for all jζj < 1 after φ:
U → D], with jω0j ¼ λL, as well as ζ0 and the derivatives
of φ−1ð0Þ computable from Eq. (28).
The maximally univalent sound analog of Eq. (24) is

recovered when zc ¼ 0 and zb → ∞. Then, we find an
exact truncated dispersion relation ωsoundðqÞ ¼ �vBq.
Bounds without pole-skipping.—In the absence of

pole-skipping considerations, we can derive bounds on
transport purely in terms of the wave propagation speeds.
For U ¼ fzjjzj < min½jzgj; R�g, with zg given by the
group velocity conditions in Eqs. (9)–(10) or in
Eq. (11), it follows that if the limit jζ0j → 1 exists, then
Eq. (14) implies bounds expressed in terms of the phase
velocities and momentum q̄: 0 ≤ D ≤ 4jvphðq̄2Þ=q̄j and
0 ≤ vs ≤ 4jvphðq̄Þj, where jq̄j ¼ min½jqgj; jq�j�. If we

can use the inequalities from Eq. (15), then 4 in the
upper bounds is improved to 1=ð2 ln 2 − 1Þ. Higher-order
coefficients are bounded either by Eq. (3) or Eq. (6). If q̄ is
the pole-skipping momentum q0, we again recover the
zb → z0 limit of Eqs. (31)–(34).
For the final example, assume that there exists a class of

theories that has the univalence properties of sound
whereby j∂ζφ

−1ð0Þj ¼ 4jω0ðz0Þj
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
, with d as the

number of spacetime dimensions. Moreover, assume that
ζ0 ¼ φðz0Þ is infinitesimally close to the boundary ofD and
that the limit jζ0j → 1 again exists. Intriguingly, for theories
satisfying these conditions, the growth theorem (14) would
then imply the following conformal upper bound on the
speed of sound: 0 ≤ vs ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðd − 1Þp

[16,17], while also
ensuring that the lower bound on vs is at vs ¼ 0. To better
understand these simple univalence conditions and their
powerful implications, it will be essential to find physical
examples of theories (ideally, theories such as quantum
chromodynamics [67]) that satisfy them or violate them
[68–71]. Of particular interest should be any potential
relation between the region U, the map φ−1ð0Þ or ω0ðz0Þ,
and the equation of state of the corresponding quantum
field theory.
Discussion.—To use the above construction of bounds,

one must first establish univalence in U. Generically, as
stated in Eqs. (9)–(11), hydrodynamic dispersion relations
will be univalent up to at least the physically motivated
group velocity conditions in complexified momentum
space, which is sufficient to use the inequalities derived
in this work. In holographic theories, this can be checked
explicitly by numerical calculations. Finding more efficient
methods for identifying (maximal or nonmaximal) regions
of univalence, possibly by directly using the associated
bulk differential equations, remains an open problem.
Another open problem is to explore univalence properties
and emergent bounds in weakly coupled field theories and
kinetic theory, as well as in quasihydrodynamic theories
with long-lived gapped modes [59]. It would also be
interesting to understand whether univalence methods
can be applied to nonlinear and far-from-equilibrium
hydrodynamic flows, as well as shed new light on the
universality of the hydrodynamic attractors [72–75].
While pole-skipping was chosen in most examples due

to our interest in relating bounds on transport to quantum
chaos, as well as for convenience, any known value
of ω0ðz0Þ in U could also have been chosen. Two such
examples were provided in the last section. Further simple
examples can arise from the pole-skipping points without a
clear connection to chaos. In fact, such choices may lead to
more restrictive bounds. This naturally opens a general
problem to find the tightest possible bounds within the
scope of univalence techniques. As the univalence methods
help pave the way toward more precise analytic explorations
of transport, these and other questions will be addressed in
the future.

FIG. 2. Ref0ðζÞ, with ζ ¼ jζjeiϕ, plotted for sound in N ¼ 4
SYM theory. The color gradient runs from jζj ¼ 0 (red) to jζj ¼ 1
(blue), with jζj ¼ 1mapped by the zc ¼ 0Möbius transformation
φ from jzj ¼ zb ¼ jzgj, where vgðzgÞ ¼ 0.
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