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Gain-dissipative platforms consisting of lasers, optical parametric oscillators and nonequilibrium
condensates operating at the condensation or coherence threshold have been recently proposed as efficient
analog simulators of the two-local spin Hamiltonians with continuous or discrete degrees of freedom. We
show that nonequilibrium condensates above the threshold arranged in an interacting network may realize
k-local Hamiltonians with k > 2 and lead to nontrivial phase configurations. Similarly, many gain-
dissipative systems that can be manipulated by optical means can bring about the ground state of the k-local
Hamiltonians and solve higher-order binary optimization problems. We show how to facilitate the search
for the global solution by invoking complex couplings in the system and demonstrate the efficiency of the
method on the sets of complex problems. This approach offers a highly flexible new kind of computation
based on gain-dissipative simulators with complex coupling switching.
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In recent years, much effort has been devoted to the
development of various technological platforms that act as
quantum or classical analog simulators aimed at solving
certain classes of hard classical optimization problems
[1–7]. It is expected that these kinds of platforms would
help to efficiently solve many tasks of significant com-
putational complexity, ranging from modeling micro-
scopic effects and processes like the behavior of
electrons in complex materials [8,9] and finding the
ground state of spin glasses [10], to the applied combi-
natorial optimization problems such as the traveling
salesman problem [11]. Large scale computational
problems of this type are hard for classical von
Neumann architecture, which suggests looking for fully
analog or hybrid digital, analog, and quantum devices that
can find a solution faster or find a better solution in a
fixed time.
Nonequilibrium condensates, optical parametric oscil-

lators, lasers, memristor crossbars, and other platforms
have been considered as annealing-inspired accelerators
and demonstrated successes in finding the ground state of
spin Hamiltonians with continuous or discrete variables
[2,6,12,13]. In particular, the coherent Ising machine has
been shown to significantly outperform classical simulated
annealing in terms of both accuracy and computation time
to efficiently solve Max-Cut problems [2] and has shown
better scalability than the quantum annealers [14].
Integrated photonic circuits that use self-phase modulation
in two microring resonators were shown to act as an optical
coherent Ising machine [15,16]. The lattices of exciton-
polariton condensates were shown to efficiently simulate
the XY Hamiltonian when operating at the condensation

threshold [12,17,18] and the extensions to minimizing Ising
and q-state Potts models were also considered [19]. In all
these systems, discrete Ising “spins” or continuous XY
spins are encoded in the individual phase modes of the
nonlinear networks. An optimization problem of interest is
mapped into the quadratic unconstrained binary optimiza-
tion problem (QUBO) and, therefore, into the connection
matrix of the Ising network. The problem of finding the
optimal solution of a QUBO problem reduces to finding the
ground state of the Ising Hamiltonian, which can be related
to finding the “maximum occupancy” of the collective
supermode of the underlying network, as a system specific
gain mechanism is continuously increased to reach the
coherence threshold [12,20].
The focus of all these technological and inspired

implementations of the annealer-based optimization
has been on QUBO, however, there is a large class of
optimization problems—the higher-order polynomial
binary optimization (HOBO)—that are more naturally
encoded by the k-local Hamiltonians [21,22]. HOBO is
concerned with optimizing a (high degree) multivariate
polynomial function in binary variables. The basic model is
to maximize or minimize a kth degree polynomial function
fðxÞ, where x ¼ ðx1; · · ·; xi; · · ·; xNÞ, xi ∈ f�1g. The
examples of HOBO are ubiquitous from the Hypergraph
max-covering problem to the Frobenius and “market split”
problems [22]. HOBO is a fundamental problem in integer
programming and is also known as the Fourier support
graph problem. Any HOBO can be mapped into the
QUBO [23], however, the overhead in the number of
nodes becomes prohibitive in an actual technological
platform since mapping k-local Hamiltonian into a 2-local
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Hamiltonian requires the introduction of an extra spin for
each product of two spins, therefore, leading to extra
N⌈k=2⌉ physical spins, while increasing the range of the
couplings which dramatically complicates the energy
landscape. Therefore, it is important to consider ways to
solve HOBO directly where all physical spins correspond
to logical spins. In our Letter, we show that Ising
machines based on nonequilibrium condensates can be
used to address 4-local HOBO when operating above the
threshold and argue that the FPGA-based CIMs, the
integrated photonic circuits with multipath interferometer
and coupling using a spatial light modulator (SLM) seem to
be naturally suited for addressing arbitrary degree
HOBO problems. Inspired by the operation of the networks
of nonequilibrium condensates we propose a new optimi-
zation algorithm for solving HOBO of an arbitrary degree.
Finally, we show that another physics-inspired method of
turning on and off the complex coupling between the
nonlinear condensates greatly enhances the search for the
global minimum.
Polynomial optimization with coherent networks.—The

optimization problem studied in this Letter is

min
x∈f−1;þ1gN

−
X

Ω
Ak

i1;…;ik
xi1 � � � xik ; ð1Þ

where Ω ¼ fij∶ 1 ≤ i1 ≤ i2 ≤ � � � ≤ ik ≤ Ng and Ak is the
supersymmetric tensor of degree k.
To formulate the gain-dissipative platform that reaches

the ground state of the HOBO by finding the “maximum
occupancy” collective supermode of the underlying net-
work of nonequilibrium condensates we consider the
mean-field equations that govern such a network based
on the Ginzburg-Landau equation [24,25]. This is a
universal driven-dissipative equation that describes the
behavior of systems in the vicinity of a symmetry-
breaking instability and has been used to describe lasers,
thermal convection, nematic liquid crystals, and various
nonequilibrium condensates [26,27]. When derived
asymptotically from a generic laser model given by
Maxwell-Bloch equations it has a saturable nonlinearity
and can be written as

i
∂ψ
∂t ¼ −∇2ψ þ Ũjψ j2ψ þ i

�
Pðr; tÞ

1þ bjψ j2 − γc

�
ψ ; ð2Þ

where ψðr; tÞ is the wave function of the system, Ũ is the
strength of the delta-function interaction potential, γc is
the rate of linear losses, b parametrizes the effective
strength of nonlinear losses, Pðr; tÞ describes the gain
mechanism that adds particles to the system. In writing
Eq. (2) we let the Planck constant ℏ ¼ 1 and the particle
mass m ¼ 1=2. It was experimentally demonstrated [12]
that when pumped at the condensation threshold, freely
expanding optically imprinted polariton condensates

arranged in a lattice may achieve a steady state with
condensate phases realizing the minimum of the XY
Hamiltonian. In this framework, the coupling strengths
between condensates depend on the system parameters,
pumping intensity, shape and on the lattice geometry [28].
We shall assume that Pðr; tÞ adds particles in N
spatial locations centered at ri, i ¼ 1;…; N, so that
Pðr; tÞ ¼ P

i fiðtÞpiðrÞ, where fi is the time-dependent
part of the pumping at r ¼ ri and piðrÞ≡ pðr − riÞ is a
given spatially localized pumping profile, that creates the
condensate with a wave function ϕiðrÞ≡ ϕðr − riÞ cen-
tred at r ¼ ri and normalized so that

R
Γ jϕðrÞj2dr ¼ 1,

where Γ is the entire domain. If the distances between the
neighboring condensates are larger than the width of pðrÞ,
we employ the tight-binding approximation and write the
wave function of the system as a linear superposition of
the wave functions of individual coherent centers
ψðr; tÞ ≈P

N
i¼1 aiðtÞϕiðrÞ, where aiðtÞ is the time-depen-

dent complex amplitude networks [19,29]. We expand the
first term in the brackets of Eq. (2) in Taylor series,
substitute the expressions for P and ψ , multiply by ϕ�

j for
j ¼ 1;…; N and eliminate the spatial degrees of freedom
by integrating in the entire space to obtain N equations of
the form

dΨi

dt
¼ Ψiðγi − ðσi þ iUÞjΨij2Þ þ

X

j;j≠i
JijΨj

þ
X

hj;k;li
QijklΨjΨkΨ�

l : ð3Þ

In writing Eq. (3) we used the following notations:
Ψi ¼ ai expðit

R
Γ ϕ

�∇2ϕdrÞ, γi ¼ fi
R
Γ pjϕj2dr − γc,

U ¼ Ũ
R
Γ jϕj4dr, Jij ¼ fj

R
Γ piϕjϕ

�
i dr for j ≠ i,

σi ¼ bfi
R
Γ pjϕj4dr and Qijkl ¼ −b

P
m∈fi;j;k;lg fm

R
Γ pm

ϕkϕ
�
lϕjϕ

�
i dr, where i ¼ j ¼ k ¼ l is excluded, which is

indicated by the notation hi; j; ki in Eq. (3) [30]. It is also
possible to introduce an additive noise in Eq. (3) repre-
senting intrinsic vacuum fluctuations and classical noise
[17]. The rate equations on ΨiðtÞ take the form similar to
what was obtained for a polaritonic networks at the
condensation threshold [17], but now involve higher-order
terms represented by the supersymmetric tensor Q.
At the condensation threshold these terms can be
neglected, however, above the threshold these terms allow
to minimize the higher-order k-local Hamiltonians. To see
this, we rewrite Eq. (3) in terms of the number densities ρi
and phases θi using the Madelung transformation
Ψi ¼ ffiffiffiffi

ρi
p

exp½iθi�:

1

2
_ρiðtÞ ¼ ðγi − σiρiÞρi þ

X

j;j≠i
Jij

ffiffiffiffiffiffiffiffi
ρiρj

p
cos θij

þ
X

hj;k;li
Qijkl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρiρjρkρl

p
cos θijkl; ð4Þ
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_θiðtÞ ¼ −Uρi −
X

j;j≠i
Jij

ffiffiffiffiffi
ρj

p
ffiffiffiffi
ρi

p sin θij

−
X

hj;k;li
Qijkl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρjρkρl

p
ffiffiffiffi
ρi

p sin θijkl; ð5Þ

where θij ¼ θi − θj and θijkl ¼ θi þ θl − θk − θj.
Equation (5) describes the evolution of the higher-order

Kuramoto oscillators that have been proposed to model
higher-order interactions between neurological dynamical
units [32]. The higher-order terms affect the states
even in the simplest configuration of two identical
oscillators pumped with γi ¼ γ for which the occupancy
ρ0 ¼ ρ1 ¼ ρ2 at the fixed point of Eqs. (4)–(5) reads
ρ0 ¼ ½γ þ J cosΔθ þ Q̃ cosð2ΔθÞ�=σ, where Δθ ¼ θ1 − θ2
and Q̃ ¼ ρ0Q. By choosing the minimum pumping
γ to reach the required occupancy, we minimize
the Hamiltonian Htwo ¼ −J cosΔθ − Q̃ cosð2ΔθÞ while
Eq. (5) describes the gradient descent to the local minimum
of Htwo. If Q̃ is negligible, we have the minimization of the
XY Hamiltonian, so Δθ ¼ 0 or π if J > 0 or J < 0,
respectively. The same minimum is realized if Q̃ is present
but has the same sign as J. However, a different phase
difference is realized when JQ̃ < 0 and jQ̃=Jj ≥ 1

4
,

namely, Δθ ¼ arccosð−J=4Q̃Þ.
In the example of two oscillators the stationary state with

an equal occupancy of the nodes is always reached.
However, in a more general system with many oscillators,
unless the oscillatory network is highly symmetric (all
oscillators have an equal number of connections of the
same strength with other oscillators) the system breaks into
subsystems characterized by different frequencies. To
guarantee the full synchronization of the network we need
to choose the injection rates in such a way that all
oscillators have the same occupancy. For instance, this
can be achieved by introducing a feedback mechanism on
the pumping rates dynamically [17].
So far we justified the appearance of tensor terms in the

gain-dissipative equations using freely expanding optically
imprinted condensates with geometrical couplings. As we
have shown above such systems involve both quadratic and
quartic terms with correlated strengths. A recently developed
scheme to couple polariton condensates remotely using the
spatial light modulator (SLM) overcomes this limitation [37]
and allows us to generate couplings that correspond to
arbitrary k-local Hamiltonians. Other gain-dissipative plat-
forms such as the FPGA-based CIMs [3], the integrated
photonic circuits with multipath interferometer and photonic
SLM-based CIMs [38] seem to be naturally suited for
addressing HOBO problems since DOPO FPGAs, multipath
interferometers, and SLMs allow us to combine the light
coming from several sources and inject into a single optical
element producing required tensor terms. Many other gain-
dissipative condensate systems that can be manipulated by
optical means such as photon condensates in dye-polymer

solution within an ultrahigh-finesse microcavity [7] or a
supersolid of dipolar excitons [39] could also be suitable as
HOBO problem solvers.
Physics-inspired optimization.—In the view of the vari-

ety of physical gain-dissipative systems capable of follow-
ing the tensor minimization we extend and simplify Eq. (3)
to capture the mechanism of relaxation to the minimum of
the HOBO. The minimum of HOBO for N binary variables
can be found by numerical integration of 2N equations

dΨl

dt
¼ Ψlðγl − jΨlj2Þ þ

X

Ω̄

Ak
i1;���ikΨi1 � � �Ψ�

ik
; ð6Þ

dγl
dt

¼ ϵðρth − jΨlj2Þ; ð7Þ

where Ω̄ is Ω with excluded index l and the initial values for
pumping strength are γlðt¼0Þ¼−max1≤l≤N

P
Ω̄jAk

i1;���;l;���ik j.
Equation (7) describes the feedback mechanism that drives all
ρi to a priori set values ρth, ϵ characterizes how fast γi adjusts
to changes in ρi.
At the fixed point, the imaginary part of Eq. (6) gives a

set of linear equations such that the lth equation involves
superposition of sinðPij≠l;ij<ik θij − θik − θlÞ that has to be
equal to zero. In general, the only way for the system to
satisfy these equations is to bring all phases θl to take on
0 or π. The total occupancy of the system at the fixed point
is found from the real part of Eq. (7) and is equal
to Nρth, so that Nρth ¼

P
N
l¼1 γl þ

ffiffiffiffiffiffi
ρth

p k−2k
P

ΩAk
i1;���;ik

cosðθi1Þ � � � cosðθikÞ. If we set the process of raising the
pumping from below that guarantees that

P
N
l¼1 γl is the

smallest possible injected intensity, then at the fixed point
the system finds the global minimum of the k-local
Hamiltonian H ¼ −

P
ΩAk

i1;���;ik cosðθi1Þ � � � cosðθikÞ, and,
therefore, solves Eq. (1). We will refer to the Eqs. (6)–(7) as
the tensor gain-dissipative (TGD) method.
To illustrate the behavior of the system we first consider

a toy problem: the 3-local Hamiltonian

HtestðxÞ ¼ −8x1x2x3 − 4x1x2x4 − 2x2x3x4 − x1x3x4; ð8Þ

with variables xi ∈ f�1g, while Eq. (6) becomes
_Ψl ¼ Ψlðγl − jΨlj2Þ þ

P
Ω̄KljkΨjΨ�

k, and K is a tensor
with nonzero entries 1,2,4,8. The Hamiltonian Htest has 24

different values, among which there are three local minima:
H1 ¼ −9, H2 ¼ −11, H3 ¼ −13 and the global minimum
H4 ¼ −15, that all can be accessed during the time
evolution of the system. To understand the basins of
attraction for these stationary points we numerically
integrate Eqs. (6)–(7) starting with initial conditions
Ψiðt ¼ 0Þ ¼ ð1=100Þ exp½iθ0i �, where the phases θ0i ∈
½0; 2πÞ are uniformly distributed. Figure 1(a) depicts the
statistics of the distribution of the stationary points reached
and indicates that the basins of local minima combined are
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larger than that of the global minimum. To facilitate the
search for the global minimum the algorithm needs to allow
for a possibility to explore the hyperspace until the lowest
lying energy state is found. This can be achieved by adding
a noise (typically present in the physical system as well),
that shifts the trajectory from its deterministic path while
allowing it to stay below any local minima. This can be
ascertained by decreasing ϵ that controls the time the
system spends while raising to the condensation threshold
from below. We illustrate this behavior in Fig. 1(b) that
depicts the statistics of reaching local and global minima
found by numerical integration of Eqs. (6)–(7) using the
same initial conditions as in Fig. 1(a) but with the white
noise added. Further decreasing of ϵ allows us to improve
the chances of reaching the global minima. On Fig. 1(d) we
show one of such trajectories as it approaches the global
minimum of Htest from below.
With the growth in the number of variables and

concomitant growth of the system hyperspace any local
noisy perturbation of the trajectory may not be sufficient
to reach the global minimum basin of attraction or it
would take a prohibitively long time. Recent interest in
heteroclinic networks—networks that exhibit saddle states
that are dynamically linked via heteroclinic connections—
proposes a way to allow for fast switching between the
states [40]. Motivated by these ideas we introduced

heteroclinic orbits into our model by engineering
time-dependent complex couplings into the network of
Eqs. (6)–(7) by replacing A with Aþ iBðtÞ. Complex
couplings often naturally appear in the governing system,
e.g., due to the repulsive interactions with the non-
condensed particles [41]. For instance, in polariton lattices
such coupling can be turned on and off experimentally
between the individual lattice elements and with strengths
varying in time and space [42]. The presence of the
complex part of the coupling introduces the phase lag in
the system that leads to either shift of the stationary point
of Eqs. (6)–(7) for small values of the complex part or
destabilization of it by creating a saddle point. In the latter
case, if the complex part of the coupling is turned on, the
system trajectory quickly leaves the neighborhood of the
previous stationary point along the fastest direction.
Including this switching dynamics into the system facil-
itates the search for the true global minimum by allowing a
fuller exploration of the phase space.
Complex coupling switching.—To implement the

complex coupling switching on Hamiltonian given by
Eq. (8) we turn two of the real coupling coefficient into
the complex ones with a significant complex part as soon as
the system reaches a steady state. The system trajectory
leaves the basin of attraction of that state and travels to a
different part of the system hypercube ½0; 2π�N . When the
complex part of the coupling is turned off another steady
state may be found. By varying the coupling elements to be
switched, the duration of the switching in time and the
amplitude of the imaginary coupling we allow the system to
efficiently search for the global minimum. In our test
example, implementing the switching of coupling coeffi-
cients K123 and K124 according to K123ðtÞ ¼ 8ð1þ
4iÞ; K124ðtÞ ¼ 4ð1− 10iÞ; t ∈ ½t1; t1 þ 160� ∪ ½t2; t2 þ 160�
∪ ½t3; t3 þ 280� and keeping K123ðtÞ ¼ 8; K124ðtÞ ¼ 4 oth-
erwise allows every trajectory irrespective of its initial state
to arrive to the global minimum. Here t1, t2, t3 are times at
which the system settles to a steady state after switching the
complex part of the couplings off. Figure 1(c) shows
convergence of all trajectories to the global minimum with
100% probability.
Complex coupling switching for large N.—We adapt the

idea of the complex couplings switching for the large scale
simulations. The elements of the dense tensors are uni-
formly distributed in ½−1; 1�. To generate sparse tensors we
take the dense tensors and randomly set 90% of all
elements to zero. To implement the complex coupling
switching (TGDþ CC) method on large N, as soon as the
system reaches the steady state we randomly choose N=50
of the coupling strengths Kijk (and their corresponding
elements with all possible permutations of the indexes) and
modify them by adding χijk ¼ 3iKijk. This destabilizes the
system and forces the trajectory to leave along a certain
orbit. After that, we let χijk ¼ 0 and allow the original
system to relax to a new steady state. Keeping the total

FIG. 1. Success rates for achieving minima of Htest given by
Eq. (8) using numerical simulations of Eqs. (6)–(7) for three
different controls described in the main text: fully deterministic
integration without noise (a); with the white noise (b); using
complex coupling control (c). Marked on the horizontal axis are
minima 1,2,3,4 that correspond to H1, H2, H3, and H4 (global
minimum), respectively. The inset (d) depicts the two-
dimensional projection (θ3 ¼ θ4 ¼ 0) of the energy landscape
for Htest with xi ¼ cos θi. The scaled and shifted total injected
intensity ðP γi − NρthÞ=3 ffiffiffiffiffiffi

ρth
p

(so that it is equal to Htest at the
steady state) found by numerical simulations of Eqs. (6)–(7) is
shown by the blue trajectory in the same 2D projection.
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injected rate
P

γl small forces the trajectories to explore
the low energy states of the Hamiltonian until the true
global minimum is found.
We compare the behavior of the TGD, TGDþ CC with

two network-based methods and show that TGDþ CC
outperforms these methods as Fig. 2 illustrates. The first
network-based method represents the network of analog
bistable units (NBU) in the presence of a double-well
potential derivative that forces the network elements xl to
take on �1 while solving Eq. (1):

dxl
dt

¼ −hxljxljk−1ðx2l − 1Þ þ
X

Ω̄

Ak
i1;���;ikxi1…xik ; ð9Þ

where xlðt ¼ 0Þ are randomly distributed real numbers, and
h is a control parameter. In comparison with the usual
k ¼ 2 case [43], we balanced the degrees of polynomial
between two terms on the right-hand side of Eq. (9) by
introducing the jxljk−1 factor.
Another efficient solver of Eq. (1) is given by higher-

order Hopfield neural networks [44]:

dxl
dt

¼−xlþ
X

Ω̄

Ak
l;i1;…;ik

si1 � ��sik ; sl¼ tanh

�
ulðtÞ
β

�
; ð10Þ

where xl are real continuous variables and β is the scaling
parameter.
Conclusions.—We introduced an idea that the systems of

gain-dissipative oscillators such as polariton condensates or
lasers are capable of realizing the k-local Hamiltonians with
nontrivial spin structures. We formulate a system-inspired
method of computing the optimal solution of a large
range of HOBO problems. Finally, we introduced the
concept of computation via the mechanism of complex
coupling switching—a dynamical feature that supports

switching between the local minima until the true global
minimum is found.
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