
 

Experimental Realization of Device-Independent Quantum Randomness Expansion
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Randomness expansion where one generates a longer sequence of random numbers from a short one is
viable in quantum mechanics but not allowed classically. Device-independent quantum randomness
expansion provides a randomness resource of the highest security level. Here, we report the first
experimental realization of device-independent quantum randomness expansion secure against quantum
side information established through quantum probability estimation. We generate 5.47 × 108 quantum-
proof random bits while consuming 4.39 × 108 bits of entropy, expanding our store of randomness by
1.08 × 108 bits at a latency of about 13.1 h, with a total soundness error 4.6 × 10−10. Device-independent
quantum randomness expansion not only enriches our understanding of randomness but also sets a solid
base to bring quantum-certifiable random bits into realistic applications.
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Randomness is a fundamental element of nature and
ubiquitous in human activities. Intrinsically, randomness
comes from the breaking of quantum coherence [1–3].
The loophole-free violation of a Bell inequality [4–9]
certifies entanglement, a special form of coherence,
in a device-independent manner. This is the essence of
device-independent quantum random number generation
(DIQRNG) [10–12], and the rigorous security analysis
makes it possible to design experiments secure against
general attacks even under the extreme condition that the
experimental devices themselves are not trusted [1–3]. The
random bits certified in the loophole-free DIQRNG experi-
ments are at the highest level of security among its kind
being unpredictable to any strategies based on quantum or
classical physics [13–15]. Randomness is required for
setting the inputs of a Bell test, however, and in previous
experimental realizations, more randomness is consumed
than the certified [11,13–15]. As it becomes publicly
known after the experiment, the input randomness is
consumed and cannot be reused. Otherwise, an adversary
can take advantage of the information leakage and com-
promise the security of DIQRNG [10]. Theoretically, the
amount of input randomness can be made arbitrarily small

for the certification of the Bell inequality violation and
further the randomness generation [16], and it is possible
that the amount of generated randomness surpasses the
input, which is randomness expansion. Randomness expan-
sion compensates the store of randomness for the con-
sumption and provides more, eliminating the potential risk
in security due to the circular involvement of randomness.
The realization of device-independent quantum random-

ness expansion (DIQRE) has remained an outstanding
challenge as it poses even stricter requirements than the
loophole-free violation of Bell inequalities and DIQRNG. In
fact, the latter two tasks are prerequisites for randomness
expansion. Besides, DIQRE requires a highly biased input
probability distribution [16,17], which causes larger
statistical fluctuations and takes more statistics for successful
certification. Consequently, it is experimentally more
demanding to realise DIQRE in a reasonable time. For
instance, higher detection efficiency, higher visibility, and a
more robust system behavior are required. While entangled
atomic systems [5,8] promise a large violation of Bell
inequality, these systems are currently constrained by low
event rates, making it hard to obtain decent experi-
mental statistics within a reasonable time frame. Entangled
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photonic systems [6,7,9,13–15,18] on the other hand exhibit
a relatively small violation of Bell inequality, but can be
operated at very high event rates, thus providing an
opportunity to achieve randomness expansion. We present
here a concrete realization of DIQRE secure against a
general quantum adversary taking advantage of two recent
advancements [19]. One is the development of cutting-edge
single-photon detection with near unity efficiency [21],
which makes entangled photon-based loophole-free Bell
test experiments viable. The other is the development of
theoretical protocols [11,16,17,22–25], which allows for the
efficient generation of randomness secure against quantum
side information in device-independent experiments, such as
the quantum probability estimation (QPE) method [24].
Below, we briefly describe the spot-checking QPE method
and our procedure to apply it to realize DIQRE.
A procedure to realize randomness expansion according

to the spot-checking QPE method is given in Table I. The
procedure consists of three key steps: parameter assign-
ments, experimental randomness expansion, and random-
ness extraction. The randomness expansion experiment is
based on a sequence of Bell-test trials in the format of
Clauser-Horne-Shimony-Holt (CHSH) game [26] (see
Fig. 1 for experimental schematics and assumptions). In
the ith trial, a source at the central station prepares a pair of
entangled photons and sends them to two spatially sepa-
rated parties, Alice and Bob. A coordinating random
number generator independent of the measurement devices
and the source generates a bit Ti ¼ 0 (or Ti ¼ 1) with
nonzero probability 1 − q (or q), respectively. If Ti ¼ 0, the
trial is a “spot trial” where Alice and Bob set their input
measurement settings to Xi ¼ 0, Yi ¼ 0. If Ti ¼ 1, the trial
is a “checking trial” where Alice and Bob choose their own
measurement settings Xi; Yi ∈ f0; 1g independently and

uniformly at random. The value of Ti is kept private from
the measurement devices. At the end of the trial Alice and
Bob deliver an output Ai; Bi ∈ f0; 1g, respectively. For a
total number of n experimental trials, we denote the input
sequences by X¼ðX1;X2;…;XnÞ, Y ¼ ðY1; Y2;…; YnÞ,
T ¼ ðT1; T2;…; TnÞ, the outcome sequences by
A ¼ ðA1; A2;…; AnÞ, B ¼ ðB1; B2;…; BnÞ, respectively,
and further denote Z ¼ XY, C ¼ AB and Zi ¼ XiYi,
Ci ¼ AiBi.
In an adversarial picture, the source and measurement

devices are prepared by a potentially malicious party, Eve, in
advance of the experiment. Generally, the behavior of the
quantum devices in each trial can be different and depend on
previous events. The final state after the experiment can be
described by a classical-quantum state shared by Alice, Bob,
and Eve, ρCZE ¼ P

c;z jczihczj ⊗ ρEðczÞ. We use lowercase
letters to denote the values that the variables actually take in
an experiment, and ðc; zÞ is one specific realization of the
experiment’s input-output sequence occurring with the
probability Tr½ρEðczÞ�. The random variable T can be
omitted without loss of generality, as we assume its value
to be secret to Eve. The quantum system of Eve, ρE, carries
the quantum side information of the measurement results.
We define the set of all possible joint final states after the
experiment to be the model MðC;ZÞ.
For randomness expansion, we determine a quantum

estimation factor (QEF) FðCZÞ with power α for the
model MðC;ZÞ. Informally speaking, with a fixed security
parameter εh, the quantity flog2½FðczÞ� þ log2ðε2h=2Þg=
ðα − 1Þ witnesses the amount of private randomness
extractable from the outputs c. To turn it into a rigorous
statement, we need to determine a criterion of success
before running the protocol. The protocol succeeds if
FðczÞ ≥ 2hsðα−1Þ, where hs (bits) is the success threshold.

TABLE I. Procedure for randomness expansion.

Step 1. Parameter determination.
(1) Assign the least target amount of entropy kexp (bits) to be expanded by;
(2) Assign the soundness error εS ¼ 2εh þ εx ∈ ð0; 1Þ (εh for randomness generation, εx for randomness extraction);
(3) Assign the probability distribution of Ti, ð1 − q; qÞ, with 0 < q < 1.
Based on these settings,
(1) Determine a valid single trial QEF FðCZÞ with power α > 1;
(2) Determine the success threshold for randomness expansion hs (bits);
(3) Determine the largest allowed number of experimental trials N;
(4) Determine the success probability of the protocol κ ∈ ð0; 1Þ.
Step 2. Randomness expansion experiment.
(1) Before the experiment, set a classical register G0 ¼ 1.
(2) In the ith trial (1 ≤ i ≤ N),
(i) Measurements.—If Ti ¼ 0, set the measurement inputs as Xi ¼ Yi ¼ 0; if Ti ¼ 1, randomly set Xi; Yi ∈ f0; 1g. Record the
measurement outputs Ai, Bi and the corresponding QEF value FiðCiZiÞ.

(ii) Discrimination.—Update the register withGi ¼ Gi−1FiðCiZiÞ. If ½1=ðα − 1Þ�log2Gi ≥ hs, stop the experiment and set FjðcjzjÞ ¼ 1,
j > n. Goto Step 3.

(iii) If ½1=ðα − 1Þ�log2GN < hs, abort the protocol.
Step 3. Randomness extraction.
Apply a quantum-proof strong extractor to C and obtain near-uniform random bits, with a security parameter no larger than εx.
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We denote the set of success events asΦ and κ ∈ ð0; 1Þ as the
predetermined lower bound on the success probability. Then,
for an arbitrary state ρCZE in the model, either the protocol
success probability is less than κ, or the smooth min-entropy
conditional on the success is lower bounded by [24]

Hεh
minðCjZEÞρCZEjΦ ≥ hs −

1

α − 1
log2

�
2

ε2h

�
þ α

α − 1
log2κ;

ð1Þ

where εh is the smoothing parameter in the smooth min-
entropy of C conditioned on ZE, and ρCZEjΦ represents the
normalized state conditional on the success. In particular, this

result holds for the general condition. To obtain a lower bound
on the εh-smooth min-entropy, a lower bound κ on the success
probability is required. Literature suggests setting κ ¼ εh to
obtain a conservative lower bound on the εh-smooth min-
entropy [23,24]. However, we remark that the lower bound κ
is irrelevant for the soundness proof of the randomness
generation protocol with QEFs (see Theorem 4 of
Ref. [24]). Because at each trial the probability distributions
of the input variables Ti, Xi, and Yi are independent of the
previous results and the quantum side information, a valid
QEF FðCZÞ for a sequence of trials can be obtained by
chaining the QEFs FðCiZiÞ for each experimental trial in the
sequence [see Sec. I. B in Supplemental Material (SM) [27] ].
If the success threshold is met in the experimental

randomness expansion procedure, the protocol shall pro-
ceed to randomness extraction. We use a quantum-proof
strong extractor to extract certified random bits from the
output sequence with a security parameter εx [49] (see
Sec. I. D in SM [27] for details in randomness extraction).
Informally speaking, the extractor takes the experimental
output sequence C in the Bell test, together with a uniform
bit string S, or the seed, as the input, and delivers a string of
near-uniform random bits, except for a failure probability
no larger than εx. We do not consider the seed as entropy
consumed in the experiment, since by definition the seed of
a strong extractor can be reused albeit at the cost of the
security parameter increased by εx [49]. Security is not
compromised even if the seed is known by Eve after the
execution of the protocol, as long as it is independent of the
raw data and the classical postprocessing process is
authenticated. Guaranteed by the composable security
property, the total failure probability of the protocol, or
the soundness error, is no larger than εS ¼ 2εh þ εx (see
Sec. I. D in SM [27]).
In the protocol, technically, an essential step is to find an

(almost) optimal QEF for witnessing entropy in the experi-
ment. We begin with taking a sequence of experimental
trials as the training set and use it to determine an empirical
input-output probability distribution νðCZÞ. With respect
to this empirical probability distribution, we perform an
optimization program to obtain a single trial QEF FðCZÞ
and estimate the amount of output randomness per trial by
rνðF; αÞ ¼ Eν½log2 FðCZÞ�=ðα − 1Þ, without considering
the smoothing parameter and protocol success probability.
For a robust experimental system whose behavior is near
the empirical knowledge, the average output randomness
witnessed by the QEF shall be close to rνðF;αÞ. All three
QRNGs for the input settings are accounted for the input
randomness, and the average entropy consumption per trial
in randomness expansion is given by

rin ¼ hðqÞ þ 2q; ð2Þ

where hðqÞ ¼ −q log2 q − ð1 − qÞ log2ð1 − qÞ is the
binary entropy, and the coefficient 2 is the amount of

FIG. 1. A schematic demonstration of the experimental setup.
The untrusted quantum devices are colored in orange and circled
with the dotted line. The trusted parts are colored in blue.
Specifically, we make the following assumptions in the protocol:
(1) Secure lab: The information exchange with an outside entity is
controlled. The devices cannot communicate to the outside to
leak the experimental results directly. (2) Nonsignaling condition:
In each trial, the measurement process of Alice and Bob is
independent of the other party. (3) Trusted coordinator: A well
characterized biased random number generator (depicted by
“Biased QRNG” in the figure) determines a trial to be “spot”
or “checking.” The setting is private to the measurement devices
and the entanglement source. (4) Trusted inputs: Alice and Bob
each have a private random number generator (depicted by
“Unbiased QRNG” in the figure) to feed perfect random bits
to the measurement device in the “checking trials.” (5) Trusted
postprocessors: The classical postprocessing procedure is trusted.
(6) Quantum mechanism: Quantum mechanics is correct and
complete.
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randomness consumed by Alice and Bob in a checking
trial. We would expect a successful randomness expansion
if rνðF; αÞ exceeds rin.
Before the experiment, we fix the target least amount of

near-uniform random bits to be expanded kexp, the smooth-
ing parameter εh involved in randomness expansion, the
security parameter εx in randomness extraction, the success
threshold hs, the largest allowed number of experimental
trialsN, and a lower bound on the success probability of the
protocol κ (see Sec. II in SM [27]). In the subsequent
experiment, in each trial the single trial QEF takes a value
FðcjzjÞ with a realization ðcjzjÞ, we keep updating a
register Gn by multiplying its value with the latest single-
trial QEF value, where n denotes the trial number. Before
the experiment, the register Gn is initialized to be G0 ¼ 1.
We can stop the experiment in advance if the chained QEF
value already exceeds the threshold before reaching the
Nth trial.
We realize randomness expansion on our upgraded

photonic-entanglement distribution platform [9,13,18]. A
sketch of the experimental setup can be found in Sec. III in
SM [27]. In the experimental preparation, we enforce the
nonsignaling condition by establishing spacelike separation
between the measurement events of Alice and Bob, such
that the output AiðBiÞ is independent of YiðXiÞ. We achieve
a single-photon detection efficiency from creation to
detection of 80.50% for Alice and 82.20% for Bob (see
Sec. III. B in SM [27]), and measure the average CHSH
game value J ¼ 0.75088, which surpasses the classical
bound of J ≤ 0.75 substantially over our previous results
[9,13,18]. Under this experimental condition, we determine
a ratio of 1 − q: q ¼ 8375: 1ðq ¼ 0.000119Þ for a good
randomness expansion result which corresponds to con-
suming the input entropy at a rate of rin ¼ 0.00197 (see
Sec. III. A in SM [27]). We operate our experiment with a
4 MHz repetition rate.
For this experimental demonstration, we set kexp ¼

512 bits with a total soundness error of εS ¼ 2εh þ εx ≈
2 × 2−32 (with εx ¼ 2−100). We conservatively set the
bound on the protocol success probability κ ¼ εh in
estimating the output randomness. We take three hours
training data (by consuming an amount of randomness k0 ≈
8.50 × 107 bits in 4.32 × 1010 trials), with which we
determine a single trial QEF with power α ¼ 1þ 1.172 ×
10−6 and an expected output randomness rate rνðF; αÞ ¼
0.00289 surpassing the input entropy rate by 0.00092. To
determine the largest allowable number of trials, we use the
protocol success probability with honest devices γ, which
relates to the completeness of the protocol (see Sec. I. E in
SM [27] for security definition). With γ ¼ 99.3%,
we determine the largest allowable number of trials to
be N ¼ 2.35 × 1011 (open square in Fig. 2), which takes
approximately 16 experimental hours, and set the threshold
as hs ¼ 6.31 × 108 bits (see Sec. IV. A in SM [27]). If Gn
surpasses hs in no more than N trials, we shall expand our

store of randomness by at least 512 near-uniform random
bits in the end.
Our result of the randomness expansion experiment

(corresponding to Step 2 in Table I) is shown in
Fig. 2. We update Gn with the observed QEF values for
every latest accumulated 1-min of experimental data. To
show the result of quantum expansion more directly, in
Fig. 2 we plot the quantity, Rn ¼ ½log2 Gn − log2ð2=ε2hÞþ
α log2 κ�=ðα − 1Þ, as shown by the blue dotted line. In view
of Eq. (1) and the remark behind it, the quantity Rn can be
seen as the amount of εh-smooth min-entropy accumulated
in the output after n trials (if the protocol will succeed).
Output randomness emerges after 2.6 × 1010 trials and
gradually surpasses the amount of entropy consumed
k0 þ nrin (black solid line). It surpasses the threshold
(open circle) after Nact ¼ 1.89 × 1011 trials (about
13.1 h). At this point we can stop the experiment in
advance and set the QEF values for the remained trials
to be 1. Therefore, we actually generate 5.47 × 108 bits of
randomness and consume k0 þ Nactrin ¼ 4.39 × 108 bits
of entropy. Afterward, we use the Toeplitz hashing matrix,

FIG. 2. Randomness expansion of at least kexp ¼ 512 random
bits in at mostN ¼ 2.35 × 1011 trials with a smoothing parameter
εh ¼ 2−32 in randomness generation. Blue dotted line: the
experimental amount of generated εh-smooth min-entropy wit-
nessed by the QEF by the nth trial Rn; black solid line: the
amount of entropy consumed by the nth trial k0 þ nrin; yellow
dash line: the least amount of εh-smooth min-entropy required to
be generated for a successful randomness expansion task.
Surpassing the threshold before N trials guarantees a successful
randomness expansion of at least 512 near-uniform random bits
at the end of the protocol, otherwise the protocol fails (repre-
sented by the gray area). The open square denotes the largest
allowed number of trials and the open circle denotes the actual
number of trials to accomplish the task. We note that the
experiment can be stopped in advance at the Nactth trial. Still,
we continue the experiment for a longer period to show the
robustness of the experimental setup, as shown in the shaded area
(in all, we have accumulated data of approximately 3 × 1012

trials).
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a quantum-proof strong extractor [49], to extract near-
uniform random bits with security parameter εx ¼ 2−100. In
the end, we expand our store of randomness by 1.08 × 108

near-uniform random bits, which is far more than the
requirement of the expansion task.
Our experimental realization of DIQRE is a substantial

progress toward the ultimate understanding of randomness.
In particular, this may further inspire the research of other
interesting directions of randomness, for example, random-
ness amplification [50], which, instead of requiring input
randomness to be independent of the devices, could amplify
the imperfect random bits into perfect ones. Besides, DIQRE
might be related with quantum side information proof
strong multisource extractors [51]. For these tasks, possible
candidates for input randomness source could be cosmic
randomness [52] and human randomness [53]. DIQRE,
which expands a very small random seed to rather long
sequence of random bits without compromising the security,
possesses a great potential for realistic applications demand-
ing high level secure randomness.
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Note added.—After finishing this work, we became aware
of a similar DIQRE experiment work [54]. This work is
based on the probability estimation method [55], which is
closely related with the QPE method used in this work, but
can only certify randomness in the presence of classical
side information. Besides, there is a DIQRE experiment
against quantum side information which is based on the
entropy accumulation theorem (EAT) [56]. We present a
discussion on the comparison of QPE and EAT methods
and list the related experimental results in SM [27].
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