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We simulate a zero-temperature pure Z3 lattice gauge theory in 2þ 1 dimensions by using an iPEPS
(infinite projected entangled-pair state) Ansatz for the ground state. Our results are therefore directly valid
in the thermodynamic limit. They clearly show two distinct phases separated by a phase transition. We
introduce an update strategy that enables plaquette terms and Gauss-law constraints to be applied as
sequences of two-body operators. This allows the use of the most up-to-date iPEPS algorithms. From the
calculation of spatial Wilson loops we are able to prove the existence of a confined phase. We show that
with relatively low computational cost it is possible to reproduce crucial features of gauge theories. We
expect that the strategy allows the extension of iPEPS studies to more general LGTs.
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Introduction.—For years, tensor networks (TN) have
been exploited to study quantum many-body problems,
especially in the context of condensed matter physics, since
they provide efficient Ansätze for ground states, low lying
excitations and thermal equilibrium states of local
Hamiltonians [1–5]. The application of TN to lattice gauge
theories (LGT) constitutes a much newer, but also fast
growing field. Their suitability for 1þ 1 dimensional
problems has already been widely demonstrated using
the matrix product state (MPS) Ansatz. In numerous
studies, MPS have been shown to efficiently and accurately
describe the relevant equilibrium physics of Abelian
and non-Abelian LGTs, even at finite density where the
infamous sign problem would turn traditional Monte Carlo
approaches infeasible, TN enable continuum limit extra-
polations, as well as simulations in out-of-equilibrium
scenarios (see Refs. [6,7] for recent reviews).
The one-dimensional success strongly motivates an

extension of the TN study to LGT in higher spatial
dimensions, where the natural generalization of the MPS
Ansatz is provided by projected entangled pair states
(PEPS) [8], or its infinite version defined directly in the
thermodynamic limit, iPEPS [9]. More restricted TN have
allowed some first encouraging steps for two-dimensional
models. Early on, the phase diagram of a Z2 LGT was
studied with MERA [10,11], and, more recently, tree tensor
networks [12] were applied to explore the U(1) quantum

link model on a finite lattice [13]. But a fully variational
PEPS calculation for a LGT does not yet exist.
Although the fast progress in iPEPS algorithms has

allowed reaching some of the most competitive results for
certain condensed matter problems [14–20] and there is no
conceptual limitation to apply them to LGTs [21], until the
date the only numerical results of (i) PEPS simulations of
LGTs have been limited to very simple toy models, or did
not perform an actual optimization of the most general
tensors [22–27]. Apart from the obvious increase in
computational cost, another more limiting factor is the
presence of plaquette terms in the LGT Hamiltonian.
While it is possible to directly apply a plaquette term to
PEPS [28,29], this involves a considerably higher com-
putational cost than the two-body interactions for
which the most efficient PEPS algorithms are optimized,
and ultimately limits the bond dimension that can be
explored to only very small values, not enough to
approach convergence.
In this work we develop a new update strategy that

allows the standard plaquette term of a LGT to be applied
as a sequence of purely two-body operations. This allows
us to use an iPEPS Ansatz to study the phase diagram of a
Z3-invariant LGT in two spatial dimensions. In agreement
to predictions in the literature [30–32], we observe a
confining and a nonconfining phase. We are able to
quantitatively locate the transition at a value of the coupling
constant g2c ¼ 1.159ð4Þ. This constitutes the first ab initio
iPEPS study of a 2þ 1D lattice gauge theory, and opens the
door to studying a rich variety of LGTs using the most
efficient up-to-date PEPS algorithms.
Model.—We consider a Z3 invariant lattice gauge theory

given by the following Hamiltonian in 2þ 1 space-time
dimensions
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H ¼ HE þH□; ð1Þ
where

HE ¼ g2

2

X
x

E2ðxþ i=2Þ þ E2ðxþ j=2Þ;

H□ ¼ −
1

2g2
X
x

UPðxÞ þ U†
PðxÞ:

The plaquette operator is written as

UPðxÞ ¼ U†ðxþ j=2ÞU†ðxþ i=2þ jÞ
Uðxþ iþ j=2ÞUðxþ i=2Þ;

where x is the position of a vertex and i, j are unit vectors
in both space directions connecting two adjacent vertices.
The physical degrees of freedom are the link variables

which have a local Hilbert space of dimension d ¼ 3 and
consequently E takes values in f−1; 0; 1g. The unitary
operators U and U†, lower and raise, respectively, the
eigenvalue at the corresponding link by one unit

Ujei ¼ je − 1i;
U†jei ¼ jeþ 1i;

and Z3 symmetry demands U3 ¼ ðU†Þ3 ¼ 1.
In the limit of d → ∞ this Zd Hamiltonian yields a Uð1Þ

lattice gauge theory where HE corresponds to the electric
field and the plaquette terms in H□ reproduce the magnetic
parts [33].
The Hamiltonian in Eq. (1) commutes with the Gauss-

law operator GðxÞ at every point in space giving rise to a
local Z3 gauge symmetry where GðxÞ is given by

GðxÞ ¼ e
2πi
3
½ElðxÞþEdðxÞ−ErðxÞ−EuðxÞ�; ð2Þ

where the subscripts l, d, r, u correspond to the links which
are to the left, down, right, up of the vertex at position x.
Notice that GðxÞ is defined at the vertices of the lattice
while the links live in between vertices. Given that
½GðxÞ; H� ¼ 0, the Hamiltonian is block diagonal and
physical states that satisfy the Gauss-law obey

GðxÞjψi ¼ e
2πi
3
qðxÞjψi; ð3Þ

where qðxÞ ∈ f−1; 0; 1g can be thought of as the static
charge at vertex x. Although the ground state of the system
lives in the charge sector with qðxÞ ¼ 0, ∀x, it is also
interesting to study different charge patterns, as we will do.
Method.—An iPEPS Ansatz consists of a unit-cell of

rank-5 tensors arranged in a 2D grid which is repeated in
both space directions infinitely many times. Those tensors
have a physical index of dimension d equal to that of the
local Hilbert space of each degree of freedom (3 in our

case) and 4 additional virtual indices of bond dimension D
that allow for the interactions with neighboring tensors.
As D increases the Ansatz becomes more general and,
consequently, a better description of the true quantum state
is expected.
There are several ways of optimizing the tensors within

the unit cell in order to find the ground state. One
possibility relies on a variational approach in which only
one tensor is varied at a time by keeping the rest fixed. The
optimal tensor is then found by solving a generalized
eigenvalue problem before moving to the next one [2].
While the variational method has been able to obtain very
accurate energies [15,16], the most widely used strategy for
iPEPS, which we also adopt here, is still an imaginary time
evolution, very much in the spirit of the popular time
evolving block decimation (TEBD) algorithm [35]. In the
most efficient version, a simple update (SU) [36] strategy is
used to find the optimized tensors.
We use a second order Suzuki-Trotter [37,38] expansion

of the Hamiltonian exponential

e−βðHEþH□Þ ¼ lim
n→∞

ðe−δτ
2
HEe−δτH□e−

δτ
2
HEÞn ð4Þ

with δτ ¼ β=n and β the total imaginary time evolved until
convergence.
Traditional iPEPS algorithms have been optimized for

Hamiltonians with nearest neighbor interactions. Longer
range or higher-order terms considerably increase the
computational cost. Therefore, in order to apply these
methods to our problem, we need a simple and efficient
update strategy that takes into account four-body plaquette
operators like the ones that appear in LGTs.
In order to apply the plaquette operator in its exponential

form we import an idea originally envisioned for digital
quantum simulations of LGTs [39–42]. The key aspect
consists of including an auxiliary degree of freedom with
the same Hilbert space as the links themselves at the center
of each plaquette. This ancilla is prepared in a state which
is an equal weight symmetric superposition of all basis
states. Following the notation of Ref. [40] we call it
jĩni ¼ ð1= ffiffiffi

3
p ÞPm¼−1;0;1 jm̃i. The derivation presented

in the above mentioned papers allows us to write the
action of the four-body operator e−δτH□ as a sequence of
two-body gates (we call this the entangler) followed by a
local operation on the ancilla. The inverse of the entangler
(the disentangler) leaves the ancilla back in its original state
jĩni, ready for the next update. The full identity reads

U†
□
e

δτ
2g2

ðŨþŨ†Þ
U□jeini ¼ jeinie−δτH□ ; ð5Þ

where the entangler U□ ¼ U†
lU

†
uUrUd is the product of

four two-body gates between ancilla and the corresponding
links. Each of these two-body gates is written as

U i ¼ Ui ⊗ P̃1 þ 1i ⊗ P̃0 þ U†
i ⊗ P̃−1; ð6Þ
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where Ui with i ¼ l, u, r, d act on the links and P̃m are
ordinary projectors in the ancilla Hilbert space that project
onto state jm̃i. The local operation on the ancilla
eðδτ=2g2ÞðŨþŨ†Þ involves Ũ and Ũ† which are nothing but
ordinary U (and U†) operators acting on the ancilla degrees
of freedom. Note, that Eq. (5) is a mathematical identity and
there is no approximation involved. We refer the interested
reader to the original papers for a clean derivation of Eq. (5).
The electrical evolution corresponds to a sequential

action of e−ðδτg2=4ÞE2

-single-site operators onto the physical
indices of all links. Since we employ the simple update
procedure (SU) this operation does not increase the bond
dimensions and thus carries no truncation errors.
In order to implement the update procedure described

above, we choose a 4 × 4 unit cell as our iPEPS Ansatz as
shown in Fig. 1. The unit cell contains 16 different tensors,
8 of them corresponding to the gauge degrees of freedom
residing on the links (green circles labeled li, with
i ¼ 1;…; 8), plus four tensors for the ancillas (yellow
squares) at the center of the plaquettes and four for the
vertices (blue diamonds). The solid lines represent the
physical lattice of the system that connects links and
vertices while the dashed lines correspond to an auxiliary
lattice that connects ancillas with links. All tensors (links,
ancillas, and vertices) have a physical dimension of d ¼ 3.
iPEPS are able to account for global and local sym-

metries of the theory by imposing a particular block
structure of the tensors [22–24,43–46]. In our case, this
is ensured by applying a gauge projector that enforces the
Gauss-law on the vertices [47]. Since all the terms in the
Hamiltonian commute with GðxÞ, it is enough to apply
the projector at the beginning of the imaginary time
evolution. To cope with potential errors introduced by
the truncation, we subsequently monitor the expectation
value of GðxÞ to be sure to stay in the sector of interest. We
observe that the deviation (with respect to the desired
sector) is not larger than 10−6 in any of our simulations.

Similarly to other tensor networks, iPEPS allow for the
calculation of local observables. This requires an accurate
approximation of the environment around a given tensor. In
this work we calculate the environment with the corner
transfer matrix (CTM) method [48,49], which introduces
an additional bond dimension, controlling the precision of
such approximation [33].
Altogether, this strategy allows us to simulate the

imaginary time evolution of a LGT including the four-
body plaquette operator by means of well-known tools to
the iPEPS practitioners like single and two-body gates.
Phase diagram.—When g2 → ∞, the electric field term

dominates and, in the case of vanishing static charges at all
the vertices, the lowest energy is attained when all links
are in the zero electric flux state. The ground state thus
becomes a product state with zero energy. Similarly, in the
weak coupling regime when g2 → 0 the energy per pla-
quette tends towards the asymptotic value of −1=g2 where
the ground state is again a product state. It is well known
that Zd gauge theories are dual to spin systems with nearest
neighbor interactions [30]. For Z3 in 2þ 1 dimensions the
system undergoes a first order phase transition [31,32]
around some critical coupling g2c.
We have performed calculations at D ¼ 3, 4, 5 for the

whole range of couplings from g2 ¼ 0.01 to g2 ¼ 5.0. As
expected, increasing the bond dimension yields lower
energies in general. We observe that for some values of
the coupling constant near the phase transition, D ¼ 5 was
not able to provide a lower estimate than D ¼ 4. We
attribute this to a lack of full convergence of the SU on
those points. Since for the rest of parameters the relative
difference between the results for D ¼ 4 and 5 is small, we
take D ¼ 4 as our best data-set and use D ¼ 3 and 5 to
estimate numerical errors [33]. Our ground-state energy
results are plotted in Fig. 2.

FIG. 1. iPEPS unit cell.

FIG. 2. Ground state energies for the zero charge sector with
bond dimensions D ¼ 4, 5. We compare to the sector of two
adjacent vertices, respectively, projected to charges 1 and -1 with
bond dimension D ¼ 4, 5. Inset: Transition region zoom in.
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First order phase transitions can be cleanly detected by
TN simulations [50] as cusps in the energy curve,
corresponding to a level crossing. This effect is apparent
in Fig. 2 at intermediate values of the coupling (the dashed
lines are meant to guide the eye). A cleaner way of
locating the phase transition is by the discontinuity
in the first derivative of the energy, which can be
calculated as

∂EqðxÞ¼0
0

∂g2 ¼hψGSj
∂H
∂g2 jψGSi¼

1

g2
hψGSjHE−H□jψGSi ð7Þ

and is plotted in Fig. 3. A clear discontinuity between
g2c ¼ 1.15 and g2c ¼ 1.175 can be identified.
We also consider a different charge sector, in which we

project two adjacent vertices to static charges 1 and -1
respectively (as illustrated in Fig. 5). Below the phase
transition, both sectors are close to degenerate (see
Fig. 2), and as soon the transition is crossed, they
separate. The energy per plaquette of the static charges
tends to g2=8 in the limit of g2 → ∞ since our unit cell
contains 4 plaquettes and in that limit there is a single
link whose E2 expectation value is 1, while the rest
vanish. The fact that the energies of both sectors start to
strongly deviate from each other exactly at the phase
transition represents a consistency check that we have
correctly located the transition region. We will attempt a
more accurate determination of g2c via Wilson loops in the
following section.
Wilson loops.—The phase transition separates a non-

confining (for small g2) from a confining (for large g2)
phase. We can characterize it by investigating the ground
state expectation value of several closed spatial Wilson
loops, the simplest of them being the plaquette which enters
the calculation of the energy. In the confining phase, these
values are expected to decay exponentially with the area of
the loop. Because of the large computational cost of

these quantities, we restrict ourselves to loops of width
1 and length n ¼ 1;…; 6. The corresponding operator can
be written in closed form as

W1×n ¼ U†ðxþ j=2Þ ⊗
�
⊗
n−1

α¼0
Uðxþ ðαþ 1=2ÞiÞ

�
;

⊗ Uðxþ niþ j=2Þ

⊗
�
⊗
n−1

β¼0
U†ðxþ ðn − β − 1=2Þiþ jÞ

�
: ð8Þ

We calculate hψGSjW1×njψGSi and show the results in
Fig. 4. We perform a linear fit of the logarithm of the real
part of hW1×ni (the imaginary part is consistent with zero)
vs the area n, and read off the slope σ. The phase transition
clearly manifests in a sudden increase of σ when the
coupling approaches a critical value g2c. In order to extract
this critical value, we perform several fits of the data to a
form Aðg2 − g2cÞα and estimate the errors by varying the
number of points included in the fit. We find

A ¼ 2.0ð3Þ; g2c ¼ 1.159ð4Þ; α ¼ 0.39ð3Þ: ð9Þ

Electric field map.—In order to illustrate clearly the very
different behavior of the electric field in both phases, in
Fig. 5 we plot hψGSjE2

ljψGSi for all 8 links in the unit cell in
different charge sectors. The zero charge sector keeps
translational symmetry for all values of the coupling and
above the phase transition the electric field is practically
zero. For the case of two static charges, we see that below
the phase transition the behavior is very similar as in the
zero charge sector, while as soon as the transition is

FIG. 3. Expectation value of ∂H=∂g2 on the ground state for the
zero charge sector. Bond dimension is D ¼ 4. FIG. 4. Area-law coefficient σ obtained from the fit of the

expectation value of the Wilson loops that is shown in the inset
for D ¼ 4 ground states. The color bar represents the value of the
coupling g2. The blue band represents an error estimation for the
fitted curve.
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crossed, the electric field is confined to a single link
between two charges.
Conclusions.—We find that iPEPS are capable of accu-

rately capturing the physics of a gauge theory with different
phases in 2þ 1 space-time dimensions. With moderate
bond dimension, the iPEPS Ansatz allows us not only to
determine the ground state energy but also to explore the
phenomenology of the model, including the location of a
confinement phase transition.
Key to this development is a special update strategy that

employs additional ancillary degrees of freedom and
reduces many-body terms to sequences of two-body
operations. This allows us to deal with plaquette terms
in an efficient way, and also to correctly implement Gauss-
law constraints at the vertices as a way to impose the local
symmetry.
The strategy can be immediately applied to other LGTs,

but also to other Hamiltonians that require the inclusion of a
four-body operator. Since the original construction [42] on
which this update is based can be applied to non-Abelian
Lie groups and also to operators acting on a larger number
of sites [41,51], we expect that the method can be further
generalized. Dynamical fermions can additionally be
included in the approach without involving a sign problem,
and we leave this direction for future work. Altogether, this
opens the door to more ambitious iPEPS studies of LGTs.
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