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We present results of a hybrid experimental, theoretical, and simulation-based investigation of the
postbuckling behavior of thin elastic rods axially impacted by a projectile. We find a new postbuckling
mechanism: mode coarsening. Much akin to inverse energy cascade phenomena in other nonlinear
dynamic systems, energy is transferred during mode coarsening from higher to lower wave numbers—
unless the rod breaks, abruptly dissipating in the course of fracture the rod’s strain energy. We derive a
model that provides a predictive means to capture mode coarsening in the form of a nondissipative, purely
geometric force relaxation mechanism, and validate the model by means of molecular dynamics (MD)
based structural dynamics simulations for rods of wood and pasta considering different thermodynamic
ensembles. The scalability of theory and simulation for engineering applications opens new venues toward
safe design of engineering structures subject to impact-induced risks of buckling, ranging from
skyscrapers, to aerospace structures, to the crashworthiness of vehicles, for example.

DOI: 10.1103/PhysRevLett.126.045501

Buckling, that is the elastic instability of rods subject to
compression loads, is one of the most studied phenomena
in engineering mechanics, ever since Euler in 1744 derived
the critical buckling load beyond which an initial straight
rod exhibits excessive lateral bending deflection [1]. This
continuous scholarly interest owes much to the importance
of buckling in many engineering applications ranging from
civil and mechanical engineering [2,3] and thin aerospace
structures [4], to protein microtube buckling in biome-
chanics applications [5]. Beside the omnipresence in
application, much emphasis has been given to understand-
ing the development and propagation of instabilities in
dynamic buckling which occur when the load is applied
suddenly, as during impact [6–8] or stress release [9,10]. In
fact, following an impact, the preferred wavelength of the
buckling instability of rods (Fig. 1) is quite different from
Euler’s static buckling mode, and drives characteristic
fragmentation patterns of brittle rods [11], or the time-
dependent wrinkling pattern of impacted sheets [12,13].
Yet, a wealth of questions remains when it comes to purely
elastic dynamic buckling; that is, when no energy is
dissipated by small scale thermal fluctuations [14], long-
range viscous deformation [2], or abrupt fracture.
Here, we focus on the postbuckling behavior of thin

elastic rods subject to sudden impact and approach this
problem through a combination of experiments, first-order
analytical solutions, and molecular dynamics (MD) based

simulations of buckling tests in different thermodynamic
ensembles. Through this combination we show that, after
impact, a time-dependent geometric relaxation phenome-
non takes place, during which energy is transferred from
higher to lower wave numbers [Figs. 1(a1)–1(e1)]; unless
the rod breaks [Figs. 1(a2)–1(e2)], dissipating in the course
of fracture the rod’s strain energy and leading to an abrupt
force relaxation. Such competition between force relaxa-
tion and fragmentation during instability development
seems to be a general pattern of many deformable systems,
including the dynamical fragmentation of membranes [15].
Our typical experimental setup for dynamic buckling

consists of a projectile axially impacting two types of rods
clamped on the nonimpacted side, as shown in Fig. 1: an
elastic rodmade of wood (ρ ¼ 0.5 g=cm3, rectangular cross
section of width b ¼ 3.1 mm, thickness d ¼ 0.53 mm, and
length l ¼ 720 mm with Young’s modulus E ¼ 10 GPa);
and a brittle rod made of dry pasta (ρ ¼ 1.5 g=cm3, circular
cross section of diameter d ¼ 0.8 mm, and length l ¼
250 mm with Young’s modulus E ¼ 3 GPa). The steel
cylindrical projectile (14.6 mm diameter, mass 10 g) falls
by its own weight through a long acrylic tube from a given
height adjusted to reach the desired impact velocityU0. The
impact dynamics, deformation, and possible fragmentation
of the rod are recorded at a rate of the order of 105 frames per
second. Impact results in a transient longitudinal load along
the rod. Instability induces the relaxation of this force.
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Two types of force relaxation mechanisms are illustrated in
Fig. 1: in the case of the elastic rod (wood) [Figs. 1(a1)–
1(e1)], following the impact, the bending deformation due to
buckling is small and dominated by short wavelengths
[Figs. 1(b1) and 1(c1)]. Whereas a few tens of milliseconds
later, the bending deformation has increased and is domi-
nated by increasingly longer wavelengths [Figs. 1(d1) and
1(e1)] through a deterministic process (see Supplemental
Material [16]). Things develop quite differently for the
brittle rod (dry pasta) [Figs. 1(a2)–1(e2)]. Shortly after
impact a sinusoidal perturbation appears [Fig. 1(b2)], and
develops into a dominating wavelength of the buckling
instability. As a consequence, a few tenths of milliseconds

later, the pasta has buckled appreciably and begins to shatter
[Fig. 1(c2)]. The pursuing fragmentation releases the bend-
ing energy and the axial forces abruptly, imparting in the
course of this process angular momentum of alternating
signs to the fragments which rotate and scatter.
We start by rationalizing these observations through a

power spectral density (PSD) analysis of the deformation
patterns from the beam position coordinates, ξiðxÞ;
i ¼ 1;…; N, obtained from digitized images of the experi-
ments for, respectively, N ¼ 5500 time frames from the
wooden rod buckling and relaxation, and N ¼ 700 time
frames from the dry pasta rod buckling and fragmentation. A
selected number of spatial PSDs, SiðkÞ, for the wood rod
experiment are shown in Fig. 2(c), as obtained from the
spatial signal ξiðxÞ for a selected progression of time frames
displayed in Fig. 2(d) (continuous lines). Two observations
deserve attention, namely that each PSD (normalized by
its maximum value) exhibits a clear peak spectral density
representative of a dominating instability wave number
k ¼ 2π=λ (with λ thewavelength); and that this peak spectral
density shifts with time from high wave numbers (small
wavelengths) to low wave numbers (long wavelengths).
This time-dependent mode coarsening is displayed in
Fig. 3(a) showing the dominating instability wave number
versus time at which the wave number peaks in the spectral
density [Fig. 2(c)]. If we remind ourselves that the spatial
PSD represents (close to a multiplying factor) the energy
contribution of each mode to the overall buckling bending
energy, it becomes apparent that this mode coarsening in
dynamic postbuckling of rods is representative of a
progressive transfer of energy in time from high energy
modes to low energy modes; much akin to inverse energy
cascade phenomena in other nonlinear dynamic systems
[17]. In contrast, the buckling of a brittle rod has no such

FIG. 1. Dynamic buckling experiments with (top) wooden rod
(length 720 mm); (bottom) dry pasta rod (length 250 mm): (a1)–
(e1) instability formation and visible mode coarsening after
impact at times t=τ ¼ 0, 2.5, 45, 149, 300 (buckling time
τ ¼ d=U0 ≈ 2 × 10−4 s, withU0 ¼ 2.72 m=s). (a2)–(e2) Instabil-
ity development and fragmentation at times t=τ ¼ 0, 0.38, 0.58,
0.85, 1.58 (τ ¼ 3.4 × 10−4 s, with U0 ¼ 2.3 m=s).

FIG. 2. Spectral density and transverse displacements for
wooden rod at different time frames obtained from (a),
(b) NVE simulations; and (c),(d) experiments (continuous
line) and NVT simulations (dotted line) (impact duration
τ ¼ 2 × 10−4 s).
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mode coarsening: rather than transferring energy from
higher wave numbers to lower ones, the energy is dissipated
in the formation of fractures [Fig. 3(b)].
We proceed by developing a quantitative theoretical

framework that explains the experimentally observed mode
coarsening in the dynamic postbuckling behavior of thin
elastic rods. We place ourselves within the classical
framework of dynamic Euler buckling of a beam (length
l, cross section A, moment of geometric inertia I, mass
density ρ, Young’s modulus E), subject to a compressive
force P (e.g., [2]):

ρÄξþ ∂2

∂x2 ðEIξ
00Þ þ ∂

∂x ðPξ
0Þ ¼ 0; ð1Þ

where ξ ¼ ξðx; tÞ is the beam’s lateral deflection. Our
model departs from the assumption that the experimentally
found energy transfer mechanism originates from a force
relaxation mechanism. More specifically, if we equate the
change in length, l ≃

R
l−δl
0 ð1þ 1

2
ξ02Þdx, with the axial

strain caused by the force, PðkÞ ¼ EAϵ, for deflections of
the form ξðx; tÞ ∼ ξk exp ðikx − iωtÞ along x ∈ ½0;l − δl�,

with ξk ∼ ξ0tk=τ the kth mode’s lateral deflection magni-
tude, and δl ≈U0=cl the shortening induced by the impact
of the projectile [11], whose velocity is U0 (the speed of
compressive waves is c ¼ ffiffiffiffiffiffiffiffi

E=ρ
p

), we obtain a transient
force relaxation of the form (see derivation in Supplemental
Material [16]):

Pðt < tkÞ ¼ P0

�

1 −
�
t
tk

�
2
�

and tk ∼ τ

ffiffiffiffiffiffiffiffiffiffiffi
U0=c

p

ξ0k
; ð2Þ

where τ ∼ d=U0 is the characteristic time of impact and P0

is the initial buckling force.
Next, we inspect solutions of Eq. (1) with Eq. (2) for

t < tk and t > tk [when Pðt > tkÞ¼ 0] while ensuring con-
tinuity at t ¼ tk, and find (see Supplemental Material [16]):

ξkðtÞ ¼ ξ0 cos ðωktÞ þ
kd

ffiffiffiffiffiffiffiffi
U0c

p
ωk

sin ðωktÞ; ð3Þ

where ωk ¼ cdk2. Finally, with a focus on identifying a
relation between the apparent dominant deflection wave
number k at time t, we seek the maximum magnitude of the
transient shape, from ∂ξk=∂k¼ cdtð ffiffiffiffiffiffiffiffiffiffiffi

U0=c
p

−2k3cdtξ0Þ þ
Oðk4Þ¼ 0, and finally obtain the sought time-wave number
scaling relation:

k ¼
�
U0

c

�
1=6

�
d
cξ0

�
1=3

t−1=3: ð4Þ

Thus, as time t increases the wave number k, at which ξk
reaches a maximum decreases. This is a hallmark of a mode
coarsening mechanism induced by a pure geometric force
relaxation process, as captured by Eq. (2). The decay,
k ∼ t−1=3, is similar to the coarsening law observed in a
wide variety of diffusive systems [18], though in the present
case the process is purely inertial. The power scaling
k ∼ t−a is consistent with the experimental trends shown
in Fig. 3(a). Still, the exponent obtained by fitting
the experimental data is different; kexp ∼ t−1=1.9 versus
k ∼ t−1=3. This difference means that the experimental
mode coarsening mechanism occurs faster in time than
predicted by the model suggesting that the energy transfer
from high to lower wave numbers is accelerated by some
form of energy dissipation. While viscous material dis-
sipation mechanisms can be excluded (given the extreme
short duration of the buckling experiment), we remind
ourselves that the experiment did not take place in vacuum,
but in air involving losses due to the drag of the deforming
rod with the surrounding air, a phenomenon known to
influence coarsening dynamics [7,13].
To probe this hypothesis, we turn to molecular dynamics

inspired structural simulations, and discretize the rod into
mass points with interactions described by harmonic
potentials of mean force suitable for structural members

FIG. 3. Evidence of mode coarsening vs fracture competition:
(a) Time of occurrence of maximum PSD vs wave number
obtained, for wood rod from experiments (black), NVE simu-
lations (blue), and NVT simulations. (b) Fragmentation of pasta
rod after instability development as observed in experiments
(black) and NVE simulations (blue) (time t=τ ¼ 0.85). (Wood
rod: τ ¼ 2 × 10−4 s; pasta rod: τ ¼ 3.4 × 10−4 s).
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for both two-body (stretch) and three-body (bending)
interactions [7,19] (potential parameters are given in
Supplemental Material [16], which includes Ref. [20]).
We simulate the dynamic buckling test in two thermody-
namic ensembles: the microcanonical ensemble (NVE),
and the canonical ensemble (NVT) using a Nosé-Hoover
thermostat [21,22]. The thermostat adds or removes heat in
order to control temperature T. We load the rod by applying
a linear strain ramp, δl=l ¼ ðU0=cÞðt=t0ÞHð1 − t=t0Þ at
the free end [with HðxÞ the Heaviside function], similarly
to how the projectile impacts and shortens the beam. For
t > t0, we inspect the postbuckling behavior and follow the
PSD evolution in time of the simulated lateral deflection.
Simulation results replicating the NVE ensemble are

presented in Figs. 2(a) and 2(b), and NVT results along
with experimental observations in Figs. 2(c) and 2(d)
showing the PSD for a selected number of rod profiles
at different times. In Fig. 3(a), we display the time-wave
number scaling; that is, the time at which a specific wave
number exhibits a maximum, obtained in an identical
fashion of our analyses of the experimental results. First,
the NVE results (shown in blue color) in Fig. 3(a) follow
exactly the k ∼ t−1=3 scaling, which provides an a posteriori
validation of our analytical force relaxation model [Eq. (4)].
Second, the NVT simulation results are in a very good
agreement with the experimental results in both the PSD
[Fig. 2(c)] and the instability growth [Fig. 2(d)]; but as well
in terms of the time-wave number scaling (shown in black
color) in Fig. 3(a), kNVT ∼ t−1=2 versus kexp ∼ t−1=1.9. All
this provides strong evidence that the mode coarsening
found in our experiments is affected by dissipation related
to kinetic energy exchanges between the rod and the air
represented in the NVT simulation by a thermalized bath.
We also obtain an excellent agreement between experi-

ment and simulation of the brittle rod in terms of frag-
mentation [Fig. 3(b)], when considering cutoff stretch and
rotations at which the bonds break (for parameters, see
Supplemental Material [16]). Because of the very short
time to fracture [t=τ < 1, Fig. 1(c2)], there is no difference
between NVE and NVT simulations. The absence of mode
coarsening in dynamic buckling of brittle rods is thus due to
the fact that neither energy transfer from higher to lower
modes nor energy exchange with the bath suffice to reduce
the strain energy in the rod to a level below the fracture
energy of the material. Instead, the strain energy is
dissipated in the formation of fractures.
A last point of inquiry we here address is the relevance

of thermalization in the postbuckling behavior. For one,
the observed mode coarsening involves energy transfer
between instability modes far beyond the first static Euler
buckling load, P ≫ Pcrit ¼ π2EI=l2, with elastic instabil-
ities that—by definition—do not represent equilibrium
states. For the NVT simulations, it is thus of interest to
find out how far the thermostat is able during instability
growth and mode coarsening to control the temperature.

This is achieved here by introducing the kinetic temper-
ature of the rod, kBT ¼ ð2=DÞĒk, with kB the Boltzmann
constant, D the system’s dimension, Ēk ¼ h1

2
miV⃗i · V⃗ii the

mean kinetic energy of N mass points of mass mi and
velocity V⃗i. The evolution of the rod’s kinetic temperature
[Fig. 4] is determined from the lateral deflection rate,
Vi ¼ ∂ξi=∂t, for both the experiment and the NVT
simulation. Following a kinetic temperature burst in the
early stages of instability growth, the kinetic temperature
decays during mode coarsening, and reaches a horizontal
asymptote. Moreover, we observe an overall force relax-
ation during this kinetic temperature decay, which is not far
off the quadratic scaling with time as considered in our
model [compare inset of Fig. 4 with Eq. (2)]. Noteworthy is
the fact that the asymptotic value of the structure’s kinetic
temperature is well above the bath’s temperature T0 → 0,
prescribed in the simulations. This observation is readily
attributed to the instability in dynamic buckling [23]:
evoking the zeroth law (two systems are in equilibrium
when they have the same temperature), it becomes apparent
that the rod is not in thermodynamic equilibrium with the
bath when the structure exhibits instabilities.
In summary, considering a fundamental question in the

dynamics of elastic beams, curiously never explicitly
addressed before, we have uncovered a new postbuckling
mechanism, called mode coarsening, which has features of
an inverse cascade-type transfer of energy, a novel insight
in the physics of fragmentation. Our study shows that if an
impacted rod has not broken during its first buckling
response stage, it is unlikely that it will subsequently. In
our (deterministic) theory, the deflection slope kðtÞξkðtÞ of
the most amplified wave number kðtÞ with amplitude ξkðtÞ

FIG. 4. Time evolution of normalized kinetic temperature,
Ekin=maxEkin, obtained from experimental observations (black)
and NVT simulations. Noteworthy is the fact that the kinetic
temperature does not decay to the prescribed bath temperature,
T0 → 0. The inset shows the force relaxation obtained from NVT
simulations. (Time t is normalized by the impact time
τ ¼ 2 × 10−4 s; force P is normalized by the first static Euler
buckling load, Pcrit ¼ π2EI=l2).
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in Eqs. (3) and (4), decays initially, and never exceeds its
initial value. Of course, other ingredients like fracture
delay, damage, defects (see, e.g., [24,25] and the review
in [26]) are out of this description, and in some particular
situations breakup may occur after coarsening has started.
But within our theory it does not, consistent with our
observations with brittle pasta.
The proposed model was validated through experiments

and MD-inspired structural simulations in different thermo-
dynamic ensembles, thus opening new venues toward safe
design of engineering structures subject to impact-induced
risk of buckling, ranging from skyscrapers, to aerospace
structures and vehicle’s crashworthiness, to name a few.
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