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We present a joint experimental and theoretical analysis to assess the adiabatic experimental
preparation of ultracold bosons in optical lattices aimed at simulating the three-dimensional Bose-
Hubbard model. Thermometry of lattice gases is realized from the superfluid to the Mott regime by
combining the measurement of three-dimensional momentum-space densities with ab initio quantum
Monte Carlo (QMC) calculations of the same quantity. The measured temperatures are in agreement with
isentropic lines reconstructed via QMC for the experimental parameters of interest, with a conserved
entropy per particle of S=N ¼ 0.8ð1ÞkB. In addition, the Fisher information associated with this
thermometry method shows that the latter is most accurate in the critical regime close to the Mott
transition, as confirmed in the experiment. These results prove that equilibrium states of the Bose-
Hubbard model—including those in the quantum-critical regime above the Mott transition—can be
adiabatically prepared in cold-atom apparatus.
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The simulation of strongly interacting quantum systems
in experiments represents a most promising research effort
[1], relying on the exquisite level of control acquired on
different platforms—from ultracold atoms [2–4] to semi-
conducting [5] or superconducting [6,7] circuits. When the
goal is the realization of an equilibrium state of a quantum
many-body system, a paradigm common to all these
platforms is that of adiabatic preparation [8,9] in the
absence of an external heat bath: starting from a fiducial
quantum state of an initial Hamiltonian, a continuous
variation of the Hamiltonian parameters aims at trans-
forming the state into the equilibrium state of a target
Hamiltonian, at constant entropy. The successful imple-
mentation of the above paradigm is yet far from obvious,
and depends on whether the state preparation is performed
at (nearly) zero entropy or at finite entropy.
In platforms manipulating small ensembles (N∼10–103)

of degrees of freedom—such as trapped ions [3], atoms in
optical lattices [10], Rydberg atoms [4], and quantum
circuits [7]—the initial state can be prepared as the (nearly)
pure ground state close to zero entropy. The conditions for
its adiabatic transformation upon varying the Hamiltonian
are mostly dictated by the size of the gap to the excited
states [8]. The main obstacle to this pure-state adiabaticity
is therefore offered by the vanishing of the excitation gap
upon increasing the system size, e.g., at a quantum phase
transition [11,12].
The situation is different for quantum simulators realiz-

ing transformations of mixed states at finite entropy. This
encompasses a wealth of platforms, e.g., ranging from

ultracold atoms [2] and superconducting circuits [13] to
quantum dots [5]. Extending the criteria of pure-state
adiabaticity to a mixed state would suggest prohibitive
conditions, as the energy gaps in the middle of the spectrum
are exponentially small in the system size. Instead mixed-
state adiabaticity does not require to follow adiabatically
each pure state of the mixture, but rather to produce a state
compatible with an equilibrium state of the instantaneous
Hamiltonian at the same entropy. What are the conditions
to guarantee such mixed-state adiabaticity? And what is the
effect of quantum phase transitions (occurring in the
ground state) on a finite-entropy transformation?
These are in fact formidable questions, that are being

theoretically addressed only recently [14], and which are
potentially hard to answer to with unbiased calculations.
In experiments, keeping the entropy at a low value upon
Hamiltonian transformations has always been a central
preoccupation, e.g., when loading quantum gases in optical
lattices [15]. But quantitative answers to the above ques-
tions are missing, mostly because a direct measure of the
entropy in the experiment is hardly accessible. On the other
hand, a viable route to probe the adiabatic preparation of
strongly correlated quantum states at finite entropy results
from the combination of experiments with ab initio cal-
culations [16–21]. Indeed experimental (quasi-) adiabatic
processes can be certified whenever the expected equilib-
rium state produced by the evolution can be efficiently
simulated classically (using, e.g., quantum Monte Carlo).
This program of certifying finite-entropy adiabatic proc-
esses, including the crossing of a quantum phase transition,
is precisely the object of this work.
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In this Letter, we study the adiabatic preparation of low-
energy equilibrium states in the three-dimensional (3D)
Bose-Hubbard (BH) model
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i and ni ¼ b†i bi are bosonic operators, hiji are nearest-

neighbor pairs on the cubic lattice, J is the hopping
amplitude, and U the on-site repulsive interaction energy,
and Vi ¼ Vxx2i þ Vyy2i þ Vzz2i is a parabolic trapping
potential. At uniform integer filling n this model possesses
a ground-state quantum phase transition from a superfluid
(SF) phase to a Mott insulator (MI) phase upon increasing
the ratio u ¼ U=J—for n ¼ 1 the transition occurs for
uc ¼ 29.34 [22]. We implement the physics of the 3D BH
model using interacting bosons of metastable helium-4
atoms (4He�) loaded in a 3D optical lattice [21,23]. The
lattice depth sets the value of u and provides a tool to cross
the critical value uc for the SF/MI transition [24]. Previous
experiments [16] have demonstrated that slow ramps of the
optical lattice produce interacting superfluid states (up to
u≲ uc). Yet the adiabatic nature of the loading process,
and the possible effect of the quantum phase transition on it
(for u > uc), remains to be tested. To achieve this goal, we
exploit two ingredients associated with the detection of
4He� atoms: (i) the measurement of the 3D momentum-
space density ρðkÞ using multichannel-plate detectors [25],
offering the finest level of diagnostics on the first-order
phase coherence; (ii) the single-atom sensitivity that per-
mits the study of ensembles with a moderate atom number
(N ≈ 3000), with the benefit that ab initio quantum
Monte Carlo (QMC) simulations are achievable down to
low temperatures. The combination of high-resolution
measurements with ab initio simulations allows us to
certify the preparation of equilibrium states of the 3D
BH model, along the trajectory defined by the above-cited
atom number and by the initial entropy, which was the
lowest we could achieve experimentally before ramping the
optical lattice. In addition, we quantify the entropy per
particle S=N in the experiment, and we find that it is
conserved as u is varied (with a value S=N ∼ 0.8kB) even
when crossing the critical value uc. This conclusion,
illustrated in Fig. 1, is the main result of our work.
The experiments starts with the production of 4He� Bose-

Einstein condensates (BECs) in a crossed optical dipole
trap (ODT) [26]. The BECs are then loaded into the lowest
energy band of a 3D optical lattice, characterized by a
lattice spacing d ¼ 775 nm and an amplitude V0 ¼ sEr,
where Er ¼ h2=8md2 is the lattice recoil energy [21,27]. In
the lattice potential, the harmonic trap is isotropic with a
frequency 140ð10Þ × ffiffiffi

s
p

Hz (see Supplemental Material
[28]). The BEC atom number N ¼ 3.0ð5Þ × 103 ensures a

lattice filling n0 at the trap center equal or smaller than one
atom per site, n0 ≲ 1. To load the atoms in the 3D lattice,
V0 is increased linearly at a rate of 0.3Er=ms while the
intensity of the ODT is decreased linearly to zero in 20 ms
[see Fig. 2(a)]. The linear increase of V0, which corre-
sponds to an almost exponential increase of u, is indepen-
dent of the final value of u, and the ramp is simply stopped

FIG. 1. Experimental reduced temperatures TJ ¼ kBT=J (open
dots) obtained from the momentum-space-density thermometry
(see text) plotted as a function of the ratio u ¼ U=J, and
compared to isentropic lines. The underlying false-color plot
shows the theoretical map of the entropy per particle S=NkB
of the trapped 3D BH model, with the experimental parameters.
The white dashed curve is the isentropic line at S=N ¼ 0.8kB.
The black dashed line represents the line of critical temperatures
for the uniform 3D BH model at unit filling (from Ref. [22]).
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FIG. 2. (a) Time sequence for the loading of the 4He� BECs
from the optical dipole trap in the 3D optical lattice. The intensity
of the 3D lattice is increased linearly with time at a rate of
0.3Er ms−1. For two different final values of the lattice intensity,
the two ramps coincide up to reaching the lowest of the two
values. The linear increase of the lattice intensity corresponds to
an approximately exponential increase of the ratioU=J over time.
(b)–(c) 1D cut ρ½k ¼ ðk; 0; 0Þ� along the u⃗x axis through the 3D
momentum-space densities measured at u ¼ 5 and u ¼ 92.
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at a later time the larger the value of u. The shape and
parameters of the ramps were optimized by reducing the
heating and the atom losses observed after a protocol that
transfers atoms in the lattice and back to the bare ODT. The
ramps used to transfer the atoms from the lattice back to the
ODTare the time reversal of the loading ramps. At the final
lattice amplitude V0, we hold the atoms for 5 ms before
switching off the lattice potential abruptly and letting the
gas expand. We then measure the 3D distribution of
individual atoms with the He� detector after a time of
flight (TOF) of 297 ms [21].
We record 3D atom distributions at various amplitudes

of the lattice across the SF-MI transition, from u ¼ 5 to
u ¼ 92. For each value u, the distribution results from
averaging over about M ∼ 600 runs of the experiment,
and permits to extract the k-space density ρðkÞ, as well as
atom correlations [23,29]. Two examples of profiles ρ½k ¼
ðk; 0; 0Þ� are shown in Figs. 2(b)–2(c). The well-contrasted
peaks in Fig. 2(b) signal the extended phase coherence
associated with a superfluid, in contrast with the broad
distribution of the MI regime shown in Fig. 2(c). Note that
the loss of coherence in the latter regime is due to the
interaction, and not to heating, since ramping down u
allows us to recover the interference pattern of the super-
fluid [23]. In contrast to previous works [16,30,31], we do
not observe an incoherent background. This probably
derives from the difference in the detection methods:
optical probes [16,30,31] yield line-of-sight integrated
2D densities at moderate TOF durations [32,33], while
the He� detector provides us with the 3D density in the far-
field regime of expansion.
The temperature T of the lattice gas cannot be extracted

directly from ρðkÞ since an analytical prediction for the
trapped 3D BH model of Eq. (1) does not exist. Instead, we
use a thermometry method that relies on the fact that ρðkÞ
can be obtained ab initio using QMC simulations. Since all
the experimental parameters but the temperature are
known, T is the only adjustable parameter in the compari-
son with QMC simulations—in particular we make use of
the stochastic series expansion [34] in the canonical
ensemble [35], with a fixed particle number N ¼ 3000.
More specifically, T is estimated as the temperature that
minimizes the distance between the measured normalized
k-space density ρ̃expðkÞ ¼ ρðk; 0; 0Þ=ρð0Þ with the theo-
retical one ρ̃QMCðk;TÞ ¼ ρQMCðk; 0; 0;TÞ=ρQMCð0;TÞ—
focusing on the momentum cut along k ¼ ðk; 0; 0Þ. Such
a comparison relies on two assumptions that can only be
verified a posteriori, by exhibiting a convincing agreement
between the experimental and theoretical data: (i) the
experiment realizes a thermal equilibrium state of the 3D
BH model; (ii) the temperature of the equilibrium state is
well defined in spite of the shot-to-shot fluctuations of
the atom number N. The second assumption raises as well
a question for the QMC calculations. In principle, the
numerics should involve averaging at different atom

numbers N, which is computationally rather demanding
(in particular for the entropy calculations, see below).
A detailed analysis of the effect of N fluctuations (see
Supplemental Material [28]) shows that such an average is
not needed in practice. For the temperature and interaction
regimes explored in the experiment, the quantity we use for
the thermometry, namely, ρ̃QMCðk;TÞ, shows a dependence
on N that spans a smaller range in densities than that
associated with the experimental uncertainty. In other
words, the experiment should reproduce (within its uncer-
tainty range) results consistent with the equilibrium behav-
ior for the 3D BH model in the canonical ensemble. For all
the lattice depths, the theoretical density ρ̃QMCðkÞ corre-
sponding to the optimal temperature matches well the
experimental density ρ̃expðkÞ. This is true even in the
critical regime of the Mott transition, as illustrated in
Fig. 3(a) for u ¼ 30, for which the minimum reduced
chi-square corresponding to the optimal temperature is
compatible with unity (see Supplemental Material [28]).
This justifies a posteriori our working assumptions.
The results of the thermometry analysis are summarized

in Fig. 1, which encompasses all the relevant regimes of
the 3D BH model. In the SF regime, the reduced temper-
ature TJ ¼ kBT=J is estimated with a small uncertainty

d

(a)

(b) (c)

FIG. 3. (a) Plot of the momentum-space density ρ̃expðkÞ
measured in the experiment (restricted to the first Brillouin zone)
and of the theoretical one ρ̃QMCðk;TÞ at various temperatures TJ.
The comparison is shown for a ratio u ¼ 30 corresponding to the
location of the quantum critical point in the ground state.
(b) Measured temperature T in recoil units Er as a function of
u. The dashed line corresponds to an energy 2.2 J (expressed in
units of Er) which fits best the data in the range u ¼ 5–20.
(c) Fisher information IðTÞ for the temperature estimation from ρ̃
obtained from the QMC data; the experimental temperatures are
reproduced for reference.
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(∼10%–20%). In contrast, when the ground state is a MI,
a significant degradation is observed. We attribute this
effect to the opening of an energy gap Δ in the excitation
spectrum for the excitations localized in the center of the
trap, suppressing thermal effects up to temperatures
T ∼ Δ=kB: the experimental data, due to their finite
precision, become compatible with theoretical densities
that span a significantly larger interval in T. Note that the
small increase of TJ in the SF regime (see Fig. 1) should not
be associated with some heating mechanism. Indeed, when
T is expressed in absolute units, adiabatic cooling is
observed [see Fig. 3(b)]. This descends from the fact that
the isentropic gas is contained in a Bloch band whose width
is proportional to J and decreases with s.
To assess the precision of the thermometry, we compute

numerically the Fisher information IðTÞ [Fig. 3(c)] that
captures the sensitivity of ρ̃ðkÞ to variations in T, and which
bounds the minimal uncertainty on the temperature
obtained via the k-space thermometry [28], ðδTJÞmin ¼
½IðTÞM�−1=2, withM being the number of experiment shots.
We find that IðTÞ takes its smallest values in the Mott
phase, consistent with observed loss of accuracy in the
experiment. In addition, for the parameters used here, IðTÞ
is maximal, and the temperature therefore best estimated,
for u ∼ uc. The dramatic increase of IðTÞ close to a phase
transition reflects the critical increase of the Fisher infor-
mation for the whole quantum state [36]. The k-space
thermometry, being optimal close to the Mott transition, is
therefore ideally suited to study the adiabatic character of
state preparation above the quantum critical point u ∼ uc.
Importantly, the error bars on the estimated temperature
exhibit a variation with u compatible with that of ðδTJÞmin
set by the Fisher information. Near u ≈ uc, the uncertainty
on the estimated temperature is close to the theoretical limit
ðδTJÞmin [28]. This demonstrates that our implementation
of the k-space thermometry with 4He� nearly saturates its
maximum allowed precision.
We now turn to discussing the entropy of the lattice

gases. Along with the k-space density, the QMC simu-
lations yield the average energy per particle eðTÞ ¼
hHi=N. A high-order polynomial fit to the energy allows
one to extract the specific heat cðTÞ ¼ deðTÞ=dT and the
entropy SðTÞ=N ¼ R

T
0 dθ cðθÞ=θ [22]. The QMC calcula-

tions can access the energy and specific heat of the trapped
3D BH model down to the lowest temperatures (required to
reconstruct the entropy) thanks to the moderate particle
number and system sizes explored in the experiment. In
view of the above assumptions, the theoretically estimated
entropy should reconstruct that of the thermal equilibrium
state realized in the experiment.
Figure 1 depicts the full entropy map of the trapped 3D

BH model reconstructed with QMC over the temperature
and interaction ranges relevant to the experiment. Besides
the features of the entropy map—which we shall comment
on below—the most important observation is that all the

experimental temperatures (except at u ¼ 5) are compatible
with isentropic curves spanning the entropy range
S=N ¼ 0.8ð1Þ kB. The experimental data are consistent
with the picture in which the lattice ramp produces a
sequence of thermal equilibrium states; and in which these
states are connected by transformations conserving the
entropy. This represents our strongest form of certification
for the adiabatic preparation of equilibrium states of the 3D
BH model. In addition, the entropy of the lattice gas is
compatible with the entropy S0 of the BECs before the
loading in the lattice, S0=N ¼ 0.72ð7Þ kB [28]. This
indicates that the transfer from the ODT to the lattice is
also essentially adiabatic.
As stated previously, Fig. 1 offers an unbiased calcu-

lation of the entropy map of the trapped 3D BH model at
fixed particle number. While similar calculations can be
found in the literature (for the 1D and 2D BH model [37],
and for the grand-canonical 3D BH model within a mean-
field approximation [38]) such a map for the canonical 3D
BH model has not been presented before, and it is therefore
worth discussing here. For moderate entropies as those
of the experiment (S=NkB ∼ 0.8), one distinguishes two
asymptotic regimes: a SF regime (u ≲ 25) in which the
isentropic curves show a slow growth with u; and a MI
regime (for u≳ 35) in which the isentropic curves grow
more rapidly (roughly linearly with u). A third intermediate
regime separates the SF from the MI regime, in which the
isentropic curves show a plateau, compatible with the
experimental observations. At small u, the slow growth
of the isentropic curves in the SF regime can be understood
within Bogolyubov theory. In a uniform weakly interacting
Bose gas, the Bogolyubov speed of sound c ∝

ffiffiffi
u

p
increases with u, leading to a decrease of the density of
states. The temperature dependence of the entropy is
∼T3=u2, implying that isentropic curves at S=NkB ¼ s0
in the uniform case should grow as T ∼ s1=30 u2=3 (within the
energy range in which the dispersion relation can be
approximated as ωðkÞ ¼ ck). On the other hand, in the
MI regime the entropy of a uniform system with commen-
surate filling goes as S=NkB ∼ expð−Δ=TÞ, where Δ ∼ u
(for u ≫ uc) is the MI gap, implying T ∼ u along isentropic
curves. Note that in the presence of a trap, the cloud wings
with n < 1 evolve towards a hardcore-boson regime, in
which the thermodynamics becomes independent of u. The
intermediate plateau regime looks somewhat unexpected on
the basis of the two limiting cases, but it can be understood
as resulting from a competition between the hardening
of the Bogolyubov (phase) mode and the softening of the
amplitude mode. The latter indeed becomes gapless at
the SF/MI transition and provides a new contribution to the
low-energy density of states. A detailed study of the role of
the amplitude mode in the thermodynamics will be the
subject of future work.
In conclusion, we have estimated the temperature of

lattice gases realizing the 3D Bose-Hubbard model from a
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systematic comparison between the measured momentum-
space densities and large-scale unbiased quantum
Monte Carlo results. In all the relevant regimes of the
phase diagram, we find temperatures consistent with the
preparation of equilibrium states at constant entropy
S=N ¼ 0.8ð1ÞkB. Our results thus indicate that the adia-
batic preparation of finite-entropy states in quantum sim-
ulators is a rather robust property, as the adiabatic nature of
the loading process is unaffected by the gapless nature of
the excitation spectrum in the superfluid regime, and by the
presence of the superfluid–Mott-insulator quantum critical
point. This stands in contrast with systematic deviations
from adiabaticity (e.g., following the Kibble-Zurek sce-
nario) [11,12], which are expected when working at zero
entropy. Our findings suggest that ultracold bosons at lower
entropies than those achieved here (see, e.g., Ref. [39]),
combined with flat trapping potentials, can be adiabatically
prepared in the quantum-critical regime of the superfluid–
Mott-insulating transition [40], which still remains largely
unexplored using ultracold atoms. Moreover our work
suggests that the adiabatic preparation of finite-entropy
states can be a robust protocol in fermionic ultracold gases
[10,19] as well as in all quantum-simulation platforms
[1,7,12] investigating equilibrium phase diagrams in the
vicinity of quantum critical points.
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