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Self-Switching Kerr Oscillations of Counterpropagating Light in Microresonators
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We report the experimental and numerical observation of oscillatory antiphase switching between
counterpropagating light beams in Kerr ring microresonators, where dominance between the intensities of
the two beams is periodically or chaotically exchanged. Self-switching occurs in balanced regimes of
operation and is well captured by a simple coupled dynamical system featuring only the self- and cross-
phase Kerr nonlinearities. Switching phenomena are due to temporal instabilities of symmetry-broken
states combined with attractor merging, which restores the broken symmetry on average. Self-switching of
counterpropagating light is robust for realizing controllable, all-optical generation of waveforms, signal

encoding, and chaotic cryptography.
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In 1981, Kaplan and Meystre theoretically studied Kerr
ring resonators pumped with two input optical beams, of
equal intensity and frequency, which enter the resonator in
opposing directions [1]—see Fig. 1(a). Resonant build-up
then occurs, and the intracavity fields interact through Kerr
cross-phase modulation. A key phenomenon that can occur
in this bidirectionally pumped system above a certain
threshold is a spontaneous symmetry breaking of the
circulating field intensities—i.e., the sudden change
from equal intensities (a state that becomes unstable)
to a situation in which the intensity of one field becomes
dominant while the other is suppressed [1-10]. Micro-
resonators can additionally exhibit oscillatory behaviors
due to a variety of mechanisms, such as thermal instabilities
[11] or external forcing [12]. Here we present the first
experimental observation of oscillatory antiphase switching
between counter-propagating light beams in a passive Kerr
resonator—whereby the intensities of the two fields
exchange dominance. In photonics, noisy [13] and chaotic
[14] switching between two polarization states, as well as
in-phase and antiphase frequency combs [15], have been
described in semiconductor lasers. Recently, similar effects
have also been described in the simulation of driven-
dissipative dimers of Bose-Einstein condensates [16].

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

0031-9007/21/126(4)/043901(5)

043901-1

By scanning the frequency of the input laser in our
passive microresonator, spontaneous symmetry breaking
between the two counterpropagating beams (leading to a
dominant and a suppressed mode) is followed by the onset
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FIG. 1. (a) Schematic of a ring resonator. Two identical input

beams enter the resonator, via a coupling mechanism, to then
circulate in opposing directions. They each complete many
round-trips before eventually leaving the resonator to continue
to their respective outputs. The inset shows a glass microrod
resonator (the bulge in the middle of the rod). (b) Example of
antiphase periodic switching. “Slow time” refers to a timescale
much larger than the round-trip time of the resonator.
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of temporal oscillations in their intensities [6]. The ampli-
tudes of these oscillations grow and then switching of the
dominant oscillating mode is observed. This “self-switch-
ing” of the dominant mode restores the symmetry between
the time-averaged intensities, and is an example of attractor
merging. Controllable switching between the two beams
finds natural applications in the encoding of optical signals,
chaotic cryptography, and waveform synthesizers. In addi-
tion to passive systems, our results may be of consequence
for the gain dynamics of ring lasers [17,18], and for systems
that host Kerr solitons [19-23]—especially those with
counterpropagating modes [24]. We numerically model
this self-switching behavior using a coupled dynamical
system that features only the self- and cross-phase Kerr
nonlinearities and provide an explanation for its occur-
rence. This demonstrates that, despite the inevitable
presence of other nonlinear phenomena in the micro-
resonator—including thermal nonlinearities, dispersion,
and small amounts of frequency comb generation [25]—
the switching between the two counterpropagating beams
can be ascribed to the Kerr effect. The model system
comprises two coupled complex differential equations:

dE .
dti = Ein — [1 +i(0 — A|EL]* = BIE£|)|EL, (1)

where E are the complex amplitudes of the clockwise and
counterclockwise propagating fields seen in Fig. 1; Ej, is
the envelope of the input beam(s); € is the cavity detuning
(the difference between the frequency of the input beam
and the closest cavity resonant frequency); and finally, A
and B are the self- and cross-phase modulation constants,
respectively. The system is symmetric upon exchange of
E. with E, and the simplest symmetric solutions are those
where the two fields are equal and follow a common

trajectory. Symmetry breaking in this system has recently
been investigated in Refs. [6,26,27]. We consider A = 1
and B = 2, since our resonator is nondiffusive [1,28].
Equations (1) are mathematically equivalent to those
describing two copropagating light components circulating
within a Kerr ring resonator, with left and right circular
polarizations, respectively [6,26,29]. Although we experi-
mentally focus on the case of counterpropagating fields,
similar effects to those described here should be observable
in other systems, such as those in Ref. [30].

In Fig. 2, we plot the intensities of the two modes versus
the detuning, 6, for E;, = 2. At the beginning, the two
intensities are equal to each other (symmetric output). At
0 = 1.74, spontaneous symmetry breaking occurs, leading
to a dominant and a suppressed mode (solid lines in Fig. 2).
This is followed by the onset of temporal oscillations for
both modes at the outer edges of zones (1), and then by an
intermediate region of partial overlap between the oscillat-
ing intensities of the two modes in zones (2).

Equations (1) have been shown to exhibit chaotic
behavior after a rapid succession of period-doubling
bifurcations [6,26]. It is, therefore, instructive to visualize
this system with Poincaré sections that sample the maxima
and minima of the intensity oscillations—denoted by the
red dots in Fig. 2. The dense bands of these dots suggest
chaotic variation of the oscillating intensities. With a small
change in detuning, these dense bands can give way to thin
lines, implying the emergence of periodicity from a
previously chaotic regime. By varying the detuning within
chaotic oscillations, one enters (and leaves) a region of self-
switching between the two counterpropagating modes—
see zone (3) in green in Fig. 2. Here, self-switching
between the modes can take forms in which the intensity
variations are chaotic or periodic (many or few red dots,
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FIG. 2. Stationary and oscillatory intensities, described by Egs. (1), under a forward detuning scan, with |E;,|*> = 4.0. The blue and
black lines indicate the symmetric and symmetry-broken stationary solutions, respectively, with solid lines indicating stable states and
pale dashed lines indicating unstable states. The red dots denote Poincaré sections: a red dot is placed at each local minimum and
maximum of an oscillation. Also shown, in semitransparent yellow and blue, are the full ranges of the oscillations. The yellow and blue
shading results in a green colouring where the oscillations overlap. One observes three distinct regions: In zones (1), the oscillations in
intensity do not overlap. In zones (2), they partially overlap, but this does not cause switching. In zone (3), switching occurs between the

intensities of the two counterpropagating modes.
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respectively). Next, we shall investigate how this manifests
in an experiment.

Our experimental setup uses a whispering-gallery mode
microrod resonator (1.9 mm in diameter), with a cavity
half-linewidth, y, of approximately 1 MHz. This was
machined from a rod of fused silica, following the
procedure in Ref. [31]. The resonator is pumped at
1.55 ym with an amplified external-cavity diode laser,
coupled via a tapered optical fiber. The optical circuitry
of the setup is depicted in Fig. 3(a). The number of

Signal (a.u.)
=
N

_
(o]
f

—_
NN
R

Signal (a.u.)
_
[§)

[
o
f

0 2 4 6 8
Time (ps)

FIG. 3. (a) Schematic of the experimental setup. Fiber amplifier
(Ampli.), polarization controllers (PC), optical isolators (Iso.),
photodiodes (PD), microresonator (u-res.), oscilloscope (Osc.).
Power attenuation components are omitted for simplicity.
(b)-(d) Examples of different experimentally observed self-
switching behaviors under a detuning scan of a single cavity
resonance—the traces depict fluctuations in optical power.
(b) Intermittent switching where the modes do not exchange
dominance every time their intensities approach similar values.
(c) Transient synchronization phenomena in between transition
events (circled). (d) Near-periodic switching dynamics approach
regular periodicity (the amplitudes of the intensity oscillations
reach similar minima and maxima for every mode exchange).

components is minimized in order to reduce optical losses,
thereby maximising the power available to couple into the
resonator, and so allowing easy access to symmetry-broken
oscillatory and chaotic regimes. The power coupled into the
resonator is inferred by subtracting the transmission signal
in each direction from its respective baseline value—
measured with the laser out of resonance. The input laser
is scanned across the chosen cavity resonance. The polari-
zation of each input branch is independently adjusted to
maximize coupling efficiency and their relative powers are
adjusted until the system begins spontaneously flipping
between dominant directions of coupled light, indicating
that they are sufficiently balanced to achieve spontaneous
symmetry breaking. The oscillations within the symmetry-
broken region are then investigated. Knowing that the input
powers are balanced, the traces for each direction are
subsequently rescaled to share a common zero and maxi-
mum coupled power, in order to correct for differences in
the responses of the photodiodes. During scans of the input
laser detuning, several regimes of self-switching oscilla-
tions are observed as displayed in Figs. 3(b)-3(d).

Intermittent switching.—By “intermittent,” we refer to
oscillations that do not exchange the dominant mode every
time the intensities approach similar values. An example of
this behavior is shown in Fig. 3(b), where the red trace
remains dominant for two sequential peaks at a time.

Transient synchronization.—Another phenomenon that
can occur is transient synchronization of the mode switch-
ing, followed temporarily by a loss of their antiphase
relationship while spiraling towards the unstable symmetric
solution, over a timescale of roughly the inverse of the half-
linewidth, 1/y. Since the symmetric state is unstable, the
mode amplitudes subsequently fly apart. This is shown on
the right-hand side of Fig. 3(c).

Near-periodic switching.—This is characterized by
almost regular exchanges of the dominant mode, while
the temporal evolutions of both modes remain chaotic [see
Fig. 3(d)]. This regime is similar to, but distinct from, the
one shown on the left in Fig. 3(c), as it shows minimal
deviation from regular switching behavior. Ineliminable
experimental noise may prevent a transition to fully
periodic switching behavior.

Having observed different kinds of switching oscilla-
tions in the experimental microresonator, we use numerical
integration of Egs. (1) to reproduce their frequencies and
structure, and to investigate their anticipated fully periodic
switching behavior. Figures 4(a), 4(c), and 4(e) show
examples of mode switching oscillations of the intensities
while the corresponding rf intensity spectra are displayed
in Figs. 4(b), 4(d), and 4(f). Intermittent switching in
Figs. 4(a) and 4(b) results in broadband chaotic dynamics
of the oscillations of the mode intensities. In Figs. 4(c) and
4(d), we observe near-periodic switching between the two
intensities (see the lower part of the rf intensity spectrum).
Adjustments of the detuning parameter can lead to fully
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FIG. 4. Time series and rf intensity spectra (FFT of |E.|?) of
different switching states obtained by numerical integration of
Egs. (1). (a)—(b) Intermittent switching: the modes swap irregu-
larly, with chaotic amplitude variations (| Ej,|> = 5.8, 0 = 6.984).
(¢)-(d) Near-periodic switching approaches regular periodicity
(|Ein|> = 5.8, 8 = 7.1). (e)—() Periodic switching (under imbal-
anced input powers), implying the disappearance of broadband
chaos (|Ey, |* =4, |Ey, | = 4.2, 0 = 6.92).

periodic self-switching between the counterpropagating
modes, even for imbalanced input powers [see Figs. 4(e)
and 4(f)]. This total elimination of chaos is difficult to
observe experimentally because of noise.

The full variety of different self-switching Kerr oscil-
lations is presented in Fig. 5, where we compare and
contrast the different dynamical regimes when changing the
detuning, 6, and the input power, |E;,|*>. In Fig. 5(a), we
report their characteristic frequencies by extracting the
dominant nonzero Fourier component from rf intensity
spectra, such as those displayed in Figs. 4(b), 4(d), and 4(f).
In the region of mode switching, the characteristic fre-
quency lowers—see the purple area in Fig. 5(a)—to around
half of the typical values before the onset of switching. In
Fig. 5(b), where different dynamical behaviors are char-
acterized by different colors, red regions of self-switching
are clearly visible. Periodic switching, as displayed in
Figs. 4(e) and 4(f), appears here sporadically.

The transition to self-switching behavior [see the boun-
daries of zone (3) in Fig. 2] implies that two symmetry-
broken attractors—in which the time-averaged intensities
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FIG.5. Heat maps when varying the pump power and detuning.
(a) Characteristic frequencies (key changes in behavior are
marked with black curves). (b) Various types of dynamics: A,
steady state; B, regular oscillations; C, period doubled; D, period
tripled; E, period quadrupled; F, chaotic, nonswitching; G,
chaotic switching; H, periodic switching. The period-tripled
state, like periodic switching, is associated with the total
disappearance of chaos. The system reverts to steady-state
behavior towards the right of the frames.

of the two modes are unequal [see zones (1) and (2) in
Fig. 2]—merge into a single one where the symmetry in
their intensities is restored on average. This is characteristic
of a symmetry restoration crisis [32]. Within this self-
switching region, chaotic, intermittent, and periodic self-
switching take place on a single attractor that contains the
trajectories of both E, and E.. This implies that the
originally broken symmetry is now restored on average
over the period of the main component of oscillation.
We have experimentally observed self-switching behav-
iors in counterpropagating light—including near-periodic
switching—using a passive microresonator with Kerr non-
linearity. We have also demonstrated that these behaviors
can be explained by a simple dynamical system that
considers only Kerr effects. In particular, the self-switching
regime occurs in a well-defined region of the parameter
space delimited by a symmetry restoring global bifurcation.
This model also reproduces all the observed dynamical
states of self-switching in the microrod resonator—
including excellent agreement with the observed frequency
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of switching. It also predicts sporadic regimes of periodic
switching that may be difficult to observe experimentally
because of internal noise. Our results are of interest in the
study of global bifurcations in dynamical systems, such as
symmetry-restoring crises. From a practical perspective,
self-switching periodicity of the counterpropagating modes
can be applied in the controlled generation of twin wave-
forms and signal encoding, while chaotic states can be
potentially employed in the generation of chaotic-crypto-
graphic algorithms [33] as well as chaos-induced stochastic
resonance [34].

All data underpinning this publication are openly avail-
able from the University of Strathclyde KnowledgeBase
at [35].
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