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Highly nonclassical character of optical quantum detectors, such as single-photon detectors, is essential
for preparation of quantum states of light and a vast majority of applications in quantum metrology and
quantum information processing. Therefore, it is both fundamentally interesting and practically relevant to
investigate the nonclassical features of optical quantum measurements. Here we propose and experi-
mentally demonstrate a procedure for direct certification of quantum non-Gaussianity and Wigner function
negativity, two crucial nonclassicality levels, of photonic quantum detectors. Remarkably, we characterize
the highly nonclassical properties of the detector by probing it with only two classical thermal states and a
vacuum state. We experimentally demonstrate the quantum non-Gaussianity of a single-photon avalanche
diode even under the presence of background noise, and we also certify the negativity of the Wigner
function of this detector. Our results open the way for direct benchmarking of photonic quantum detectors
with a few measurements on classical states.
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Nonclassical states of light are of fundamental importance
in quantum optics, optical quantum communication, quantum
information processing, and quantum metrology. The non-
classical states of optical fields are commonly defined as those
whose Glauber-Sudarshan representation does not satisfy
properties of an ordinary probability distribution. An impor-
tant subclass of nonclassical states is represented by states
with negative Wigner function [1–6]. Recently, another
interesting subclass of nonclassical states has been proposed,
termed quantum non-Gaussian states [7]. These states are
defined as states whose density matrix cannot be expressed as
a convex mixture of Gaussian states. Preparation of quantum
non-Gaussian states thus requires nonlinear interaction or
detection beyond the class of Gaussian operations that
comprise interference in passive linear optical interferometers,
quadrature squeezing, and homodyne detection. While every
state with negative Wigner function is a quantum non-
Gaussian state, the class of quantum non-Gaussian states is
strictly larger and also contains states with positive Wigner
function. During recent years, the quantum non-Gaussian
states have been the subject of intensive research [7–27].
Several criteria and witnesses for detection of quantum non-
Gaussian states have been established [7–15], and the
quantum non-Gaussian character of various sources of non-
classical light has been demonstrated experimentally [16–22].
The most common way to generate a quantum non-

Gaussian state of light is to first prepare a suitablemultimode
nonclassical Gaussian state, perform measurements with
single-photon detectors on some of its modes,
and condition on photon detection [1–5,16,17,22,28].
This is schematically illustrated in Fig. 1(a). The subsequent

certification of quantum non-Gaussian character of the
conditionally generated state can then be interpreted as an
indirect certification of quantum non-Gaussian character of
the measurement performed on the auxiliary modes. For
instance, when conditioning on click of a single-photon
avalanche diode (SPAD), the positive operator-valued mea-
sure (POVM) element whose quantum non-Gaussian char-
acter is effectively tested and certified reads Π ¼ I − j0ih0j
for an ideal detectorwith unit efficiency, ormore realistically,

Π ¼
X∞
n¼0

½1 − ð1 − ηÞn�jnihnj; ð1Þ

for a detector with efficiency η.

FIG. 1. (a) Indirect certification of quantum non-Gaussian (QNG)
character of a single-photon detector, namely a single-photon
avalanche diode (SPAD). A suitable multimode nonclassical Gaus-
sian state is prepared using a parametric nonlinear process and an
inteferometric network. A measurement with the single-photon
detector is performed on some of the output modes. Quantum
non-Gaussianity of the heralded state ρQNG certifies quantum non-
Gaussianity of the detector. (b) Direct certification of quantum non-
Gaussian character or negativity of the Wigner function of a detector
by probing it with two classical thermal states and a vacuum state.
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In the present work we address the question of whether
the quantum non-Gaussian character of a quantum detector
can be characterized more directly by performing measure-
ments on suitably chosen probe states. We answer this
question in affirmative and show that, interestingly, it may
suffice to probe the detector with the vacuum state and
two classical thermal states of different temperatures; see
Fig. 1(b). Our procedure thus requires much fewer probe
states than full quantum detector tomography [29–38]. In
our approach, the role of measurement and state is reversed
with respect to the ordinary certification of quantum non-
Gaussian character of quantum states. One specific feature
of certification of quantum non-Gaussian character of some
POVM element Π is that Tr½Π� need not be finite. We show
that this obstacle can be circumvented by characterizing a
suitably regularized POVM.
We begin with a short recapitulation of the quantum non-

Gaussianity criterion that will be utilized in our work and
adapted for direct characterization of quantum non-
Gaussianity of quantum measurements. Consider a quan-
tum state ρ and let p0 ¼ h0jρj0i denote the probability of
vacuum state in ρ. Let L denote a lossy channel with 50%
transmittance, and define q0 ¼ h0jLðρÞj0i as the proba-
bility of vacuum state at the output of the lossy channel.
It holds that

q0 ¼
X∞
n¼0

pn

2n
; ð2Þ

where pn ¼ hnjρjni is the photon number distribution of
state ρ. As shown in Ref. [8], a quantum non-Gaussianity
criterion can be formulated in terms of q0 and p0.
Specifically, the state is proved to be quantum non-
Gaussian if q0 exceeds a certain threshold that depends
on p0. The dependence of maximum q0 achievable for a
given p0 with Gaussian states and their mixtures can be
expressed analytically in a parametric form [8],

p0ðVÞ ¼
2

ffiffiffiffi
V

p

V þ 1
exp

�
−
ð1 − VÞð3þ VÞ
2Vð3V þ 1Þ

�
;

q0ðVÞ ¼
4

ffiffiffiffi
V

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðV þ 3Þð3V þ 1Þp exp

�
−

1 − V2

2Vð3V þ 1Þ
�
; ð3Þ

where V ∈ ð0; 1�.
We now turn our attention to certification of quantum

non-Gaussianity of a quantum measurement, and we
specifically consider a particular measurement outcome
associated with a POVM element Π. We can treat Π as
a non-normalized density matrix. Assuming that Tr½Π�
is finite, we could introduce normalized operator
ρΠ ¼ Π=Tr½Π�, treat it as an equivalent of a density matrix,
and define

P0 ¼
1

Tr½Π� h0jΠj0i; Q0 ¼
1

Tr½Π�
X∞
n¼0

1

2n
hnjΠjni: ð4Þ

If we knew Q0 and P0, then we could apply the above
described quantum non-Gaussianity criterion based on
Eq. (3) to verify the quantum non-Gaussian character of
the POVM element Π. However, Tr½Π� can be infinite, and
even if finite, it could be difficult to measure.
We circumvent this obstacle by considering a regularized

version of the POVM element,

Π̃ ¼ WΠW†; ð5Þ

where

W ¼
X∞
n¼0

νnjnihnj: ð6Þ

The transformation (5) represents a noiseless quantum
attenuation [39] with factor 0 < ν < 1. The noiseless
quantum attenuation is a conditional Gaussian quantum
operation that can be applied to a quantum state of an
optical mode by sending the state through a beam splitter
with amplitude transmittance ν, whose auxiliary input port
is prepared in vacuum state and whose auxiliary output port
is projected onto vacuum state. If ρ is a Gaussian state or a
mixture of Gaussian states, then alsoWρW† is a mixture of
Gaussian states. Therefore, if we find that WρW† is
quantum non-Gaussian, then also ρ must have been
quantum non-Gaussian state. This observation can be
straightforwardly extended to quantum measurements. In
particular, if we find that Π̃ is quantum non-Gaussian, then
also the original POVM element Π must have been
quantum non-Gaussian. We note that the quantum state
ρ ¼ Π̃T=Tr½Π̃�, where the transposition is performed in the
Fock basis, can be conditionally generated by preparing a
Gaussian two-mode squeezed vacuum state,

jΨiAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p X∞
n¼0

νnjn; niAB; ð7Þ

and performing the quantum measurement on mode B.
Measurement outcome associated with the POVM element
Π then heralds preparation of mode A in state ρΠ̃. This
shows that the regularization (5) of the POVM element Π
has a direct experimental relevance and characterization of
Π̃ specifies the ultimately achievable properties of the
conditionally prepared state ρΠ̃, when all other aspects of
the state preparation are perfect.
Considering Π̃ instead of Π, we find that its trace is

always well defined and finite:

S ¼ Tr½Π̃� ¼
X∞
n¼0

ν2nhnjΠjni: ð8Þ
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In fact, the quantity S can be experimentally determined by
probing the detector with a thermal state. Recall that the
density matrix of a thermal state with mean photon number
n̄ reads

ρthðn̄Þ ¼
1

n̄þ 1

X∞
n¼0

�
n̄

n̄þ 1

�
n
jnihnj: ð9Þ

By choosing n̄S ¼ ν2=ð1 − ν2Þ, we get ν2 ¼ n̄S=ðn̄S þ 1Þ
and

S ¼ 1

1 − ν2
Tr½ρthðn̄SÞΠ�; ð10Þ

where Tr½ρthðn̄SÞΠ� represents the probability of outcomeΠ
when probing the detector with thermal state ρthðn̄SÞ.
We can define the vacuum probabilities P̃0 and Q̃0 for

the normalized operator ρΠ̃ ¼ Π̃=Tr½Π̃� corresponding to
the regularized POVM element Π̃ in full analogy to Eq. (4):

P̃0 ¼
h0jΠ̃j0i
Tr½Π̃� ¼ 1

S
h0jΠj0i;

Q̃0 ¼
1

Tr½Π̃�
X∞
n¼0

1

2n
hnjΠ̃jni ¼ 1

S

X∞
n¼0

ν2n

2n
hnjΠjni:

It follows that P̃0 can be estimated by probing the
detector with the vacuum state and Q̃0 can be determined
by probing the detector with thermal state with mean
photon number n̄Q ¼ ν2=ð2 − ν2Þ, which follows from
ν2=2 ¼ n̄Q=ðn̄Q þ 1Þ. In terms of the mean numbers of
thermal photons, the probabilities P̃0 and Q̃0 can be
expressed as

P̃0¼
1

n̄Sþ1

Tr½Πρthð0Þ�
Tr½Πρthðn̄SÞ�

; Q̃0¼
n̄Qþ1

n̄Sþ1

Tr½Πρthðn̄QÞ�
Tr½Πρthðn̄SÞ�

;

ð11Þ

where

n̄Q ¼ n̄S
n̄S þ 2

: ð12Þ

Let us now consider a single-photon avalanche diode
with detection efficiency η and probability of dark counts
RD. Here RD is the probability that the detector clicks when
a vacuum state is injected into the detected signal mode. We
can describe the click outcome of such a detector with the
following POVM element:

ΠSPAD ¼
X∞
n¼0

½1 − ð1 − RDÞð1 − ηÞn�jnihnj: ð13Þ

After some algebra, we obtain

P̃0 ¼
RDð1 − ν2Þð1 − ν2 þ ν2ηÞ

RDð1 − ν2Þ þ ν2η
ð14Þ

and

Q̃0 ¼ 2
RDð2 − ν2Þ þ ν2η

RDð1 − ν2Þ þ ν2η
×
ð1 − ν2Þð1 − ν2 þ ν2ηÞ
ð2 − ν2Þð2 − ν2 þ ν2ηÞ : ð15Þ

In the experiment, the mean photon numbers of thermal
states will be estimated and calibrated with some uncer-
tainty specified by a confidence interval, n̄j ∈ ½n̄−j ; n̄þj �. We
now show how to take this uncertainty into account and
obtain suitable bounds on P̃0 and Q̃0 for which the quantum
non-Gaussianity criterion remains applicable. First we
exploit the convexity of the set G of probability pairs
½p0; q0� that can be obtained from Gaussian states and their
mixtures. Since [0, 0] is an extremal point of G, it holds that
if ½p0; q0� ∈ G, then also ½xp0; xq0� ∈ G, where 0 ≤ x ≤ 1.
Conversely, if ½xp0; xq0� ∉ G, then also ½p0; q0� ∉ G.
To account for the uncertainty in determination of
n̄S we can conservatively apply the quantum non-
Gaussianity test to ½xP̃0; xQ̃0� instead of ½P̃0; Q̃0�, where
x ¼ ðn̄S þ 1Þ=ðn̄þS þ 1Þ. Practically, this means that we
replace n̄S with the upper bound n̄þS in the denominators of
prefactors in Eq. (11) and consider the probabilities

P̃0
0 ¼

1

n̄þS þ 1

Tr½Πρthð0Þ�
Tr½Πρthðn̄SÞ�

; Q̃0
0 ¼

n̄Q þ 1

n̄þS þ 1

Tr½Πρthðn̄QÞ�
Tr½Πρthðn̄SÞ�

:

ð16Þ

The utilized quantum non-Gaussianity criterion certifies
quantum non-Gaussianity when Q̃0

0 is larger than certain
threshold that depends on P̃0

0. Since Q̃0
0 is an increasing

function of n̄Q, we can avoid false positive certification of
quantum non-Gaussianity due to uncertainty in n̄Q cali-
bration by utilizing a sufficiently low n̄Q such that

n̄þQ ≤
n̄−S

n̄−S þ 2
ð17Þ

is satisfied. The condition (17) ensures that for any pair of
true values of the mean photon numbers n̄S and n̄Q from the
confidence intervals the estimated Q̃0

0 will not exceed the
value of Q̃0

0 that would be obtained for n̄Q ¼ n̄S=ðn̄S þ 2Þ.
To summarize, if one satisfies the condition (17) and
utilizes the above defined P̃0

0 and Q̃0
0, then one can certify

quantum non-Gaussianity of the POVM element Π even
with uncertainty in calibration of the mean photon numbers
n̄S and n̄Q.
In addition to certification of quantum non-Gaussianity,

the probabilities P̃0 and Q̃0 can also be used to certify
negativity of the Wigner function that represents the
characterized POVM element Π. Returning for a while
back to q0 and p0, it follows from Eq. (2) that
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q0 − p0 ¼
p1

2
þ
X∞
n¼2

pn

2n
≤
p1

2
þ 1

4

X∞
n¼2

pn: ð18Þ

Since
P∞

n¼2 pn ¼ 1 − p0 − p1, we obtain from the inequal-
ity (18) a lower bound on p1:

p1 ≥ 4q0 − 3p0 − 1: ð19Þ

If p1 > 1=2, then the Wigner function of state ρ with
photon number distribution pn is negative at the origin.
Using inequality (19), the negativity of the Wigner function
of an optical quantum state can be certified from a simple
measurement with a balanced beam splitter and a pair of
detectors, that is commonly used for measurement of the
anticorrelation factor [16,40]. If we apply the condition
(19) to the normalized operator ρΠ̃ ¼ Π̃=Tr½Π̃�, we find that
the Wigner function of Π̃ must be negative at the origin of
phase space if

4Q̃0 − 3P̃0 − 1 >
1

2
: ð20Þ

Since the noiseless attenuation (5) as a Gaussian operation
preserves positivity of the Wigner function of the POVM
element, the inequality (20) implies also the negativity of
Wigner function of the original POVM element Π.
The experimental setup for direct certification of quan-

tum non-Gaussianity of a single-photon detector is shown
in Fig. 2. Nanosecond optical pulses with the central
wavelength of 0.8 μm are produced by a gain-switched
semiconductor laser diode driven by an electronic pulser at
a repetition rate of 1 MHz. The pulser also drives an
auxiliary laser diode emulating noise of the detector under
test, and provides an electronic trigger signal. The train of
coherent laser pulses is attenuated and focused on rotating
ground glass (RGG); the output is collected by a single-
mode fiber to produce pseudothermal light with
Bose-Einstein distribution [41]. Let us stress that other
single-mode thermal sources can be used here, such as
direct intensity modulation [42] or thermal emission from

atomic ensembles [43]. The photodistribution of the gen-
erated thermal light and its mean photon number n̄ per
pulse is verified by a spatially multiplexed photon-number-
resolving detector (PNRD) [44].
The PNRD consists of cascaded tunable beam splitters

composed of a half-wave plate (HWP) and a polarizing
beam splitter (PBS), which allow for accurate balancing of
the output ports. The whole network works as a 1-to-10
splitter balanced with the absolute error below 0.3%. To
measure the multiplexed signal we use SPADs with the
typical efficiency ranging from 55% to 70%, 250 ps timing
jitter, and 25 ns recovery time. The total detection effi-
ciency of 50(1)% is determined based on measured trans-
mittance of the network and SPAD efficiencies specified by
the manufacturer. For independent verification of the
efficiency, an absolute method using correlated photons
can be used [45,46]. The electronic outputs of the SPADs
are processed by a custom coincidence unit (CCU) while
keeping the individual channels synchronized to the trigger.
The emitter-coupled logic circuitry of the coincidence unit
consists of fast comparators, delay lines, and basic gates,
and achieves 10 ps timing resolution and 20 ps overall jitter
[47]. The single-run output of the unit is stored in flip-flop
gates and is read by a microcontroller and sorted in a
coincidence histogram for repeated measurements. For the
presented experiment the histogram is reduced to just 11
elements corresponding to coincidence clicks of D detec-
tors, with 0 ≤ D ≤ 10. The photon-number statistics of the
optical signal is retrieved from the measured coincidence
histogram using the expectation-maximization-entropy
algorithm [44]. The measured photon-number statistics
matches very well to the ideal Bose-Einstein statistics with
the typical fidelity of 0.999, and the mean photon number n̄
is accurately determined.
Characterized thermal light is then fed to the detector

under test, which is, in our case, a SPAD module (SPCM-
AQRH-14-FC manufactured by Excelitas) with the detec-
tion efficiency of 58% specified by the manufacturer and
measured dark count probability of RD ¼ 1.44ð8Þ × 10−6.
The output electronic signal is again processed by the
CCU and the number of detection events is evaluated
together with the total number of the triger events, i.e., the
number of input optical pulses. The relative detection
frequency is acquired for vacuum state and thermal states
with the mean photon number of n̄Q and n̄S, which
sample the ideal probabilities Tr½Πρthð0Þ�, Tr½Πρthðn̄QÞ�,
Tr½Πρthðn̄SÞ�, respectively. The quantities P̃0

0 and Q̃0
0 are

evaluated as in Eq. (16) and the resulting diagram is shown
in Fig. 3(a). Ten pairs ½P̃0

0; Q̃
0
0� are measured for the mean

photon number n̄S ranging from 0.0103� 0.0006 to
5.04� 0.02. The error bars represent one standard
deviation. The measured data are compared to a theoretical
plot based on the formulas (14) and (15). The results
unequivocally certify quantum non-Gaussian character of
the tested SPAD. The measured pairs ½P̃0

0; Q̃
0
0� can also be

FIG. 2. Experimental setup. The scheme includes preparation
of pseudothermal state using a laser diode (LD1) and rotating
ground glass (RGG), noise generation and addition using a laser
diode (LD2), polarizing beam splitter (PBS), and polarizer (P),
calibration of mean photon numbers of thermal states, detector
under test, and coincidence counting unit (CCU).
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used to certify negativity of the Wigner function
of the detector under test based on Eq. (20); see Fig. 4.
We have unambiguously demonstrated Wigner function
negativity of the characterized SPAD. The negativity
threshold is surpassed by 132 standard deviations for
n̄S ¼ 0.0103� 0.0006, with 4Q̃0

0 − 3P̃0
0 − 1 ¼ 0.824ð7Þ.

Similarly to the quantum non-Gaussianity depth defined
for single-photon states [18], we can explore resilience of
quantum non-Gausianity of the single-photon detector to its
imperfections, such as loss and noise. Dark counts of the
detector and background light are of main interest in many
applications, such as quantum key distribution [48,49] or
mapping and counting single-photon emitters [20,50,51].
To emulate background noise, we drive an auxiliary laser
diode and superimpose incoherently the resulting Poisson
signal with the probe thermal light. Figure 3(b) shows the
measured trajectory of the ½P̃0

0; Q̃
0
0� pairs with increasing

intensity of the noise for a fixed value of the probe mean
photon number n̄S ¼ 1.0. The data are compared to
theoretical plots based on the formulas (14) and (15).
We observe that when the noise exceeds a certain threshold,
the quantum non-Gaussian character of the detector cannot
be certified any more with the applied criterion.

In conclusion, we have developed a method for direct
verification of quantum non-Gaussianity of a quantum
measurement that is based on probing the measurement
apparatus with two classical thermal states and a vacuum
state. The same experimental procedure also enables us to
certify negativity of the Wigner function representing the
characterized POVM element Π. We have experimentally
demonstrated the direct certification of quantum non-
Gaussianity of a quantum measurement for a single-photon
avalanche photodiode, and the observed experimental data
are in excellent agreement with theoretical model. Our
results extend the concept of quantum non-Gaussianity to
quantum measurements and provide new simple and
experimentally feasible tools to characterize highly non-
classical features of quantum detectors with a few mea-
surements. Our method can serve for fast and direct testing
and benchmarking of various detectors including single-
photon detectors, photon-number-resolving detectors, or
even more complex detection schemes where the signal is
preprocessed by some quantum operation such as
squeezing or amplification before being detected. Since
our method is wavelength independent, it can also be
utilized to characterize detectors of microwave photons
employed in cavity or circuit quantum electrodynamics
[52–58].
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(a)

(b)

FIG. 3. Quantum non-Gaussianity certification of single-photon
avalanche diode for various mean photon numbers n̄S of the probe
thermal states (a). Quantum non-Gaussianity certification of
single-photon avalanche diode for increased level of background
noise and the particular value of the mean photon number n̄S ¼ 1.0
of the probe thermal state (b). Measured data (markers) are
compared to theoretical model (dashed curve). For reference,
the theoretical curves in (b) are plotted for four different values of
n̄S. Error bars are smaller than data marker size. Quantum non-
Gaussianity is certified for points lying outside the yellow area.

FIG. 4. Certification of negativity of Wigner function of single-
photon avalanche diode for various mean photon numbers n̄S of
the probe thermal states, color coded similarly as in Fig. 3(a).
Vertical error bars are smaller than symbol size. Negativity of the
Wigner function is certified when the threshold 0.5 is exceeded.
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