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8Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2, Canada

9Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
10II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany

11School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
12Department of Physics & Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

(Received 1 June 2020; revised 28 September 2020; accepted 14 December 2020; published 26 January 2021)

We report high-precision mass measurements of 50–55Sc isotopes performed at the LEBIT facility at
NSCL and at the TITAN facility at TRIUMF. Our results provide a substantial reduction of their
uncertainties and indicate significant deviations, up to 0.7 MeV, from the previously recommended
mass values for 53–55Sc. The results of this work provide an important update to the description of
emerging closed-shell phenomena at neutron numbers N ¼ 32 and N ¼ 34 above proton-magic
Z ¼ 20. In particular, they finally enable a complete and precise characterization of the trends in
ground state binding energies along the N ¼ 32 isotone, confirming that the empirical neutron shell
gap energies peak at the doubly magic 52Ca. Moreover, our data, combined with other recent
measurements, do not support the existence of a closed neutron shell in 55Sc at N ¼ 34. The results
were compared to predictions from both ab initio and phenomenological nuclear theories, which all
had success describing N ¼ 32 neutron shell gap energies but were highly disparate in the description
of the N ¼ 34 isotone.
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The formation of simple, periodic patterns is a key to
understanding the organization of countless many-body
systems [1]. In the case of atomic nuclei, clear repetition of
special properties, such as enhanced binding energy, are
seen in “magic” proton and neutron numbers (like 2, 8, 20,
28, 50, …), which led to the proposition that nucleons
organize themselves into shell-like structures, analogous to
atomic electron orbitals. Today, the nuclear shell model [2]
constitutes the foundation of our understanding of these
objects. However, once believed to be immutable, these
magic nucleon numbers are now known to vanish and new
ones to appear in extreme cases of proton-to-neutron ratio
[3]. The appearance and evolution of emerging shell
closures have become standard metrics to benchmark
nuclear theories [4,5].

Emerging closed shell phenomena have been observed
for neutron-rich nuclei at neutron numbers N ¼ 32 and
N ¼ 34 at and around the proton-magic calcium chain
(Z ¼ 20). Such behaviors at N ¼ 32 were found through
several observables. Mass spectrometry experiments iden-
tified peaks in empirical neutron shell gap energies in 51K
(Z ¼ 19) [6], 52Ca (Z ¼ 20) [5,7], 53Sc (Z ¼ 21) [8], and
54Ti (Z ¼ 22) [9], but not in 55V (Z ¼ 23) [10] and higher
proton numbers. This shell closure is also seen in enhanced
2þ excitation energies at 50Ar (Z ¼ 18) [11], 52Ca [12], 54Ti
[13], and 56Cr (Z ¼ 24) [14], and reduced BðE2Þ transition
probabilities in 54Ti [15] and 56Cr [16]. In N ¼ 34, albeit
less experimentally studied, evidence of a shell closure was
observed in the mass of 54Ca [17] and in the 2þ excitation
energies of 54Ca [18,19] and 52Ar [20].
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In the shell model, a magic number appears when there is
a significant energy gap between two nucleon orbitals. In
N ¼ 32 nuclei with more than 24 protons, neutrons in the
valence p3=2 orbital are quasidegenerate with those in the
next orbital—f5=2—thus no appreciable energy gap is
observed. As protons are removed, a strong residual inter-
action between protons and neutrons weakens, causing a
migration of the neutron f5=2 energy level, a widened gap
with the p3=2, and thus the formation of the N ¼ 32 shell
closure [4]. Subsequently, as the proton number drops below
Z ¼ 23 and the proton-neutron residual interaction further
wanes, an energy level inversion between the neutron
orbitals f5=2 and p1=2 occurs [13,18]. The next neutron
orbital—p1=2—then has a degeneracy of 2, allowing also for
the formation of the N ¼ 34 shell closure provided that a
significant gap can be formed with the f5=2 orbital.
The conjoint structural changes at N ¼ 32 and 34

provide a unique opportunity to refine our understanding
of nuclear interactions and the intricate nuclear many-body
problem [4,5,9]. Therefore, detailed information on how
the characteristic observables evolve with increments in
proton number is of paramount importance. Above Z ¼ 20,
the evolution of theN ¼ 32 shell closure is nearly resolved,
but a few outstanding issues remain. Among them, recent
Isochronous Mass Spectrometry (IMS) measurements
suggest the empirical neutron shell gap at N ¼ 32 is
unexpectedly higher in 53Sc than in the doubly magic
52Ca [8,21]. In N ¼ 34, experimental evidence indicates an
absence of closed shell signatures in Ti [13,22] and their
presence in Ca [17–19] but, in between, the picture in Sc
remains unclear [23–25].
These questions demand refined mass measurements of

neutron-rich scandium isotopes, which remains the only
chain in the region still unexplored using high-resolution
techniques. In this Letter, we report precision mass mea-
surements of 50–55Sc, betweenN ¼ 29 and 34, performed in
a joint collaboration between experimental groups at the
National Superconducting Cyclotron Laboratory (NSCL)
in the U.S. and at the TRIUMF National Laboratory in
Canada.
At NSCL, the neutron-rich isotopes 50–53Sc were pro-

duced in flight by nuclear fragmentation of a 130 MeV=u
76Ge primary ion beam impinging on a natural Be target of
about 0.4 g=cm2 thickness. The beam was purified at the
A1900 fragment separator [26] and delivered to the NSCL’s
gas catcher [27], where the high-energy fragments were
stopped in a high-purity He gas. The ions were extracted at
low energies from the gas cell and selected in mass-to-
charge ratio (A=Q) by a dipole magnet. The species of
interest were extracted as singly charged molecules, mostly
oxides, formed during stopping in the gas cell. The ion
beam was then delivered to the Low Energy Beam and Ion
Trap (LEBIT) facility [28].
LEBIT is an ion trap facility dedicated to performing

high-precision mass spectrometry of short-lived ions [28].

The beam was received into LEBIT’s cooler and buncher
[29], where the continuous rare isotope beam was con-
verted into short low-emittance bunches. The ion bunches
were then sent to LEBIT’s 9.4 T Penning trap mass
spectrometer [30], where they were further purified against
isobaric contaminants by applying a dipolar radio-
frequency (RF) field [31,32].
The measurement of the mass (mion) of the ion is done

through the measurement of the frequency (νc) of the
cyclotron motion about the trap’s magnetic field:
νc ¼ ðqBÞ=ð2πmionÞ, where q is the charge of the ion
and B is the strength of the magnetic field. To measure νc,
we employed the time-of-flight ion-cyclotron-resonance
(TOF-ICR) technique [33], using standard quadrupole
excitation schemes ranging between 50 ms and 500 ms,
depending on the measurement. Figure 1(a) shows a typical
TOF-ICR spectrum obtained for 53Sc16Oþ.
The calibration of B was done through the measurement

of the cyclotron frequency of a reference ion (νc;ref ), whose
mass has been precisely measured and is well documented
in the literature [34]. The reference ions were all well-
known molecular ions produced in the gas catcher and
delivered with the ion of interest, with the same A=Q.
Measurements of νc;ref were performed at intervals not
longer than 1.5 h, interleaved between measurements of νc
of ions of interest, to account for temporal variations in the
magnetic field.
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FIG. 1. A sample mass spectrum from each experiment: (a) A
TOF-ICR spectrum of a 53Sc16Oþ molecular ion, obtained with
excitation time of 100 ms at LEBIT. The dip in time of flight
occurs at νc, extracted using an analytical fit (green). (b) A typical
MR-TOF-MS spectrum at A=Q ¼ 55 obtained at TITAN with
520 isochronous turns.
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Each TOF-ICR spectrum was fitted with an analytical
function described in Ref. [33], from which the cyclotron
frequency was obtained. A count-rate class analysis [35]
was performed to account for frequency shifts due to ion-
ion interactions. The atomic mass of the species of
interest (m) was determined from the ratio of cyclotron
frequencies (R) of the ion of interest and the reference ion:
R ¼ νc;ref=νc ¼ ðm −meÞ=ðmref −meÞ, where me is the
mass of the electron and mref is the mass of the reference
species (obtained from Ref. [34], summing the masses of
all atoms of the molecule). This equation is valid for singly
ionized species and it disregards insignificant electron and
molecular binding energies, on the order of a few eVor less.
νc;ref was obtained from an interpolation, to the time of the
measurement of the ion of interest, between the reference
measurements before and after it. The mass of the nuclide
of interest is obtained by subtracting the masses of its
molecular counterparts.
At TRIUMF, samples of 54Sc and 55Sc were produced via

the isotope separation on-line (ISOL) method through
spallation reactions at the Isotope Separator and
ACcelerator (ISAC) [36] facility by impinging a
480 MeV proton beam of 50 μA onto a Ta target,
22.7 g=cm2 thick. The reaction products were stopped
and thermalized in the target material, released through
desorption, and surface ionized at the TRILIS ion source
[37]. The beam was extracted from the target, selected in
A=Q at ISAC’s dipole mass separator [38] and delivered at
low energy to TRIUMF’s Ion Trap for Atomic and Nuclear
science (TITAN) facility [39].
The radioactive beam was accumulated at TITAN’s

cooler and buncher [40] for 20 ms and sent as ion
bunches to the Multiple-Reflection Time-of-Flight Mass
Spectrometer (MR-TOF-MS) [41]. The MR-TOF-MS
determines the mass of a charged particle through its
time-of-flight through a standardized path at known kinetic
energy [42,43]. In order to increase the measurement
resolution, this device confines the ion by bouncing it
between a pair of electrostatic mirrors, recycling and thus
extending the flight path and preserving the initial time
spread. In this experiment, the bunches were received by
the MR-TOF-MS in an internal ion preparation system

composed by gas-filled RF quadrupoles [41], where ions
were recooled for about 13 ms. The ions were then sent to
the mass analyzer for times of flight of about 7.5 ms, where
they underwent 520 isochronous turns between the mirrors.
Finally, they were detected by a MagneTOF detector [44].
An in-analyzer mass-range selector, similar to Ref. [45],
was used to remove any particle outside the desired A=Q
window. Also, to prevent ion-ion interaction effects, the
average count rate was kept below 2 counts/cycle.
A typical time of flight spectrum is shown in Fig. 1(b).

Every peak in the MR-TOF-MS spectra was fitted using a
Gaussian function. The spectra were mass calibrated using
the nonrelativistic relationship: mion=q ¼ Cðttof − t0Þ2,
where C and t0 are calibration constants and ttof is the
fitted centroid of the peak. The parameter t0 is a constant
delay caused in the signal processing and was determined
using off-line measurements. In both spectra taken with
A=Q ¼ 54 and 55, we identified the presence of isobaric
singly charged Cr, Fe, Mn, V, Ti, Sc, and several molecules.
Stable 54;55Crþ formed dominant peaks in their spectra and,
therefore, were chosen as suitable calibrants for C using
their atomic mass values available in the literature [34].
A time-dependent calibration, similar to Ref. [46],
was used to account for drifts in time of flight. A mass
resolving power of about 200000 was achieved, and a
total of 236 counts of 54Sc and 35 counts of 55Sc were
registered.
The atomic masses of the species of interest were

determined through the relationshipm ¼ mion þme, which
disregards electron binding energies. A relative systematic
uncertainty of 3 × 10−7 was added following the prescrip-
tion outlined in previous experiments [9,10,47], as well as
an additional relative uncertainty of 1.9 × 10−7 to account
for ion-ion interaction effects [48].
The masses obtained in both experiments are reported in

Table I with comparisons with the recommended values by
the Atomic Mass Evaluation of 2016 (AME16) [34]. The
precision was improved in all cases, some by over an order
of magnitude, to the scale of a few tens of keV or better.
Deviations were found, up to 0.7 MeV, in the masses of
53–55Sc (N ¼ 32–34), which can significantly impact the
description of nuclear structure phenomena.

TABLE I. Results of the mass measurements performed, compared to the values recommended by the AME16 [34]. We also provide
the mass ratio between the ion of interest and the reference ion, which is equivalent to the average cyclotron frequency ratio (R) for the
LEBIT TOF-ICR data. All mass values are in keV.

Facility Nuclide Mass excess Literature [34] Difference Ion of interest Reference ion Mass ratio

LEBIT 50Sc −44537.1 (2.5) −44547ð15Þ 10 (15) 50Sc16Oþ 12C19F35Clþ 0.999 694 485 (41)
51Sc −43250.4 (2.5) −43229ð20Þ −22ð20Þ 51Sc16O1Hþ 33S19F16Oþ 0.999 875 402 (39)
52Sc −40523.6 (3.0) −40443ð82Þ −80ð82Þ 52Sc16Oþ 33S19F16Oþ 0.999 803 339 (48)
53Sc −38769ð17Þ −38907ð94Þ 138 (96) 53Sc16Oþ 34S19F16Oþ 0.999 885 58 (27)

TITAN 54Sc −34438ð18Þ −33891ð270Þ −547ð270Þ 54Scþ 54Crþ 1.000 447 76 (36)
55Sc −30842ð62Þ −30159ð450Þ −683ð460Þ 55Scþ 55Crþ 1.000 474 2 (12)
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Because of the strong binding character of closed shells,
nucleons added on top of them are appreciably less bound.
Hence, closed neutron shells can be identified by sudden
decreases in two-neutron separation energies, defined as
S2nðZ;NÞ ¼ ½mðZ;N − 2Þ þ 2mn −mðZ;NÞ�c2, wheremn
is the mass of the neutron. These changes in slopes
are emphasized by looking at derivatives of S2n,
known as empirical shell gaps: Δ2nðZ;NÞ ¼ S2nðZ;NÞ−
S2nðZ;N þ 2Þ. Figure 2 shows S2n and Δ2n for scandium
isotopes employing our values and AME16 values [34].
Consecutive sharp features are clearly seen at N ¼ 28, a
“canonical” magic number, and at N ¼ 32, an “emerging”
magic number. Our results confirm a strong N ¼ 32 sub-
shell closure in 53Sc, but provide a 1 MeV lower (2σ away)
empirical neutron shell gap energy (3.45� 0.06 MeV)
than the AME16 and the most recent experimental result
[8] (4.4� 0.5 MeV).
Our update to the empirical neutron shell gap of 53Sc

considerably impacts the evolution of the N ¼ 32 shell
closure and finally permits its inspection using only high-
resolution mass data. Figure 3 shows Δ2n as a function of Z
for isotones of interest in the region, combining mass values
fromAME16 [34], recent experiments [8–10,17,25], and our
data. Clearly, the shell gap at N ¼ 32 evolves smoothly
without abrupt changes, mirroring the evolution of the
canonical N ¼ 28 shell but ≈2 MeV lower. With our data,
Δ2n increases monotonically through 53Sc and peaks at 52Ca,
consistent with the latter being a doubly magic nucleus.

To derive Δ2n towards N ¼ 34, we incorporated mass
values of 56;57Sc from two recent Time-of-flight Magnetic
Rigidity experiments at NSCL [25] and RIKEN [49]. The
trends in S2n in Sc seem to indicate the restoration of
nonclosed shell slope after N ¼ 34. It contrasts with the Ca
chain, where the continuation of a sharp slope through
N ¼ 34 is evidence of the existence of a shell closure [17].
We update the Δ2n at 55Sc to 1.59� 0.20 MeV. This is the
lowest empirical neutron shell gap in the N ¼ 34 isotone,
as can be seen in Fig. 3. High-resolution mass measure-
ments of 56;57Sc are required to confirm the observed trends.
As our data enable a more consistent picture of the

evolution of both N ¼ 32 and 34 isotones, we compared
Δ2n data with predictions from state-of-the-art nuclear
models, which are included in Fig. 3. We chose four
approaches that had great success in describing closed shell
features at N ¼ 32. Among phenomenological approaches,
we performed shell model calculations using the KB3G
[50] and the GX1A [51] Hamiltonians for all nuclei from
Ca (Z ¼ 20) to Fe (Z ¼ 26) between N ¼ 26 and N ¼ 36,
using the full pf model space. Both interactions have been
successful in predicting trends in binding energies
[5,7,17,25], excitation energies [15,52,53], and transition
strengths [15,16] associated with emerging closed shells in
the region. Among ab initio approaches, we employed
valence-space in-medium similarity renormalization group
[54,55] (VS-IMSRG) calculations with the 1.8=2.0ðEMÞ
[56] and the NNþ 3NðlnlÞ [57] interactions. The
1.8=2.0ðEMÞ interaction has been extensively employed
in the region and adequately predicted the presence of the
N ¼ 32 closed shell in the mass surface [8,9,56,58,59].
This approach has also had success in describing excitation
energies around this isotone [20,24,56], and trends of
charge radii in neutron-rich Ca isotopes [60]. The NNþ
3NðlnlÞ interaction, released more recently, has also cor-
rectly predicted closed shell behaviors in the region
[9,19,57,61] and has shown a comparable performance
to the 1.8=2.0ðEMÞ interaction. Our work is the first
application of the NNþ 3NðlnlÞ interaction within the
VS-IMSRG approach, which also enables the analysis of
its performance across different many-body methods.
Overall, the trends up to N ¼ 32 are well reproduced by

all predictions. In particular, the KB3G interaction produ-
ces excellent agreement with data, not only reproducing
trends but also magnitudes of shell gaps along most of the
N ¼ 28, 32 isotones. Also, both VS-IMSRG calculations
correctly reproduce the observed trends, although they
overpredict the strength of shell gaps at N ¼ 32 [9,56].
The calculations with the NNþ 3NðlnlÞ interaction have
poorer performance at N ¼ 28, 30 but produce nearly
identical results as the 1.8=2.0ðEMÞ interaction in the
region of the emerging shell closures. The GX1A inter-
action, however, produces a less pronounced evolution of
the N ¼ 32 isotone, peaking at 54Ti and not at the double-
magic 52Ca.
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The theoretical predictions are highly disparate regarding
the description of the N ¼ 34 shell gap. The GX1A
interaction predicts a strong shell gap at 54Ca, which is
not observed. The KB3G reproduces well Δ2n in 55Sc and
56Ti, but does not predict the emergence of closed shell
behaviors at 54Ca. A similar discrepancy has also been
observed in descriptions of 2þ excitation energy using
these interactions [18,52,53]. The 2þ state of 54Ca lies
2.04(2) MeVabove the ground state [18]. According to our
calculations with the GX1A interaction, it lies at 2.96 MeV,
while KB3G predicts 1.34 MeV. Both VS-IMSRG calcu-
lations are in better agreement with N ¼ 34 data at Z ≤ 22.
Most remarkably, they reproduce theΔ2n leap between 55Sc
and 54Ca, but predictΔ2n to reduce towards argon (Z ¼ 18).
It conflicts with recent γ-spectrometry results, that indicate
N ¼ 34 closed shell behaviors overcomes N ¼ 32 in
strength at Ar [11,20].
In summary, we performed high-precision mass mea-

surements of 50–53Sc at the LEBIT facility at NSCL and of
54;55Sc at the TITAN facility at TRIUMF. With our mass
values, we obtained a smooth and monotonic evolution of
the N ¼ 32 neutron shell gaps above Z ¼ 20, finally
completing the mass description of the emergence of this
closed shell using high-resolution methods. The observed
behavior conforms to typical shell evolution as confirmed
by various theoretical predictions, both from phenomeno-
logical and ab initio approaches. Our results support 52Ca
as a doubly magic nucleus, establishing it as the peak of
empirical shell gaps instead of 53Sc. Regarding the possibly
emerging closed shell atN ¼ 34, our results combined with
recent data from [25,49] suggest that closed-shell behaviors
only appear in the mass surface at Z ≤ 20. Our analysis also
explored some theoretical approaches that have had supe-
rior performance in describing emerging closed shell
behaviors in the region. Despite the proposed intimate
relationship between the emergence of closed shells in
N ¼ 32 and 34, success in describing observables in
N ¼ 32 is not correlated with similar successes in N ¼ 34.
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