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Pulsar timing data used to provide upper limits on a possible stochastic gravitational wave background
(SGWB). However, the NANOGrav Collaboration has recently reported strong evidence for a stochastic
common-spectrum process, which we interpret as a SGWB in the framework of cosmic strings. The
possible NANOGrav signal would correspond to a string tension Gu € (4 x 107'1,10719) at the
68% confidence level, with a different frequency dependence from supermassive black hole mergers.
The SGWB produced by cosmic strings with such values of Gu would be beyond the reach of LIGO, but
could be measured by other planned and proposed detectors such as SKA, LISA, TianQin, AION-1 km,

AEDGE, Einstein Telescope, and Cosmic Explorer.
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Introduction.—Stimulated by the direct discovery of
gravitational waves (GWs) by the LIGO and Virgo
Collaborations [1-8] of black holes and neutron stars at
frequencies f 2 10 Hz, there is widespread interest in
experiments exploring other parts of the GW spectrum.
Foremost among these are pulsar timing array (PTA)
experiments, which are sensitive to GWs with frequencies
f < 1/yr. PTA experiments probe the possible existence of
a stochastic GW background (SGWB), as might be
generated by very different physical phenomena such as
astrophysical sources of GWs, e.g., the mergers of super-
massive black hole (SMBHs), or cosmological sources,
e.g., cosmic strings.

Aggregating pulsar measurements for over a decade, the
EPTA [9], PPTA [10], and NANOGrav [11] PTA experi-
ments have pushed their sensitivities down to an energy
density Qgwh?> <10™° over frequencies in the range
f€(25%x107°,1.2 x 107%) Hz. Until recently, there has
been no indication of a positive signal above background.
However, a recent NANOGrav analysis of 12.5 yr of pulsar
timing data [12] reports strong evidence for a stochastic
common-spectrum process that may be interpreted as a GW
signal with amplitude A ~O(10°) at f~1/yr. The
NANOGrav Collaboration notes that this signal is in
apparent tension with previous upper limits on the
SGWB in this frequency range, but argues that this is
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not real, but reflects its improved treatment of the intrinsic
pulsar red noise. The NANOGrav signal does not exhibit
significant monopole or dipole correlations, as might arise,
e.g., from reference clock or solar-system ephemeris
systematics, respectively. On the other hand, neither does
the signal exhibit significant quadrupole correlations,
which would have been a “smoking gun” for a GW
background, and the NANOGrav Collaboration does not
claim a detection of GWs.

Nevertheless, we are emboldened to explore the impli-
cations of this possible SGWB detection by NANOGrav for
cosmic string models, discussing how experiments could
confirm or disprove such an interpretation. Upper limits on
the SGWB are often quoted assuming a spectrum described
by a GW abundance proportional to /3, as expected for
SMBH mergers [13]. However, the cosmic string GW
spectrum is not a simple power law, but is convex with an
amplitude and a frequency-dependent slope that depend on
the parameter, Gy, where G is the Newton constant of
gravitation and u is the string tension. Any limit (or
estimate) of Gu from any specific experiment must take
into account take into account the appropriate slope
parameter, which is in general # 2/3 in the characteristic
frequency measurement range. Once an allowed (interest-
ing) value of Gu has been identified, however, the cosmic
string prediction for the magnitude and spectral shape of
the SGWB is then fixed as a function of frequency, and
can then be compared with the sensitivities of other
experiments.

In this paper we calculate the effective slope parameter
for the timing-residual cross-power spectral density y
(which translates to y = 5 — f for Q o« f#) for frequencies
in the range (2.5 x 107,1.2 x 107®) Hz used in Ref. [12]
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to make a single-power fit to the NANOGrav 12.5 yr data.
The best fit to the NANOGrav data is shown as an orange
dashed line in the left panel of Fig. 1 of Ref. [12], and the
68% and 95% C.L. ranges in the (y, A) plane are shown as
orange dashed and dotted ellipses in the right panel of
Fig. 1 of Ref. [12]. We find that the cosmic string model
gives a better fit than does a single power law with
y = 13/3 as suggested by models of SMBH mergers:
the one-parameter cosmic string prediction crosses the
68% CL ellipse, whereas the y = 13/3 line passes outside
it though within the 95% ellipse. The GW spectra predicted
by the cosmic string model for Gu € (2 x 10711,2x 10710),
the range where it lies within the NANOGrav 12.5 yr
95% C.L. region in the (y,A) plane, are all completely
compatible with the EPTA upper limit, although some
tension with the PPTA results remains in the upper part of
our range. The cosmic string predictions are well within the
estimated reaches of the SKA [14], LISA [15,16], TianQin
[17,18], AEDGE [19], AION-1 km [20], ET [21,22] and
CE [23] experiments, but beyond the present and estimated
future sensitivities of the LIGO [24-27] experiment.

GW spectrum from cosmic strings.—Cosmic strings are
one-dimensional stable objects described by their charac-
teristic tension u. They are a common prediction of many
extensions of the standard model [28,29] featuring a U(1)
symmetry-breaking phase transition in the early Universe
[30]. They can also arise in superstring theory as cosmo-
logically stretched fundamental strings [31,32]. We focus
mostly on the former case, for which the intercommutation
probability p (the probability that strings reconnect in a
different way after crossing) takes the value p =1, and
comment on this choice towards the end of the following
section.

We use a simple method of computation of the GW
spectrum from a cosmic string network following [33,34]
(for an overview, see [35]). We utilize the velocity-
dependent one-scale (VOS) model [36-38], assuming that
the length of a loop produced by the network ¢ at time ¢;
evolves as

¢ =ast; —TGu(t - 1), (1)

where Gy is the string tension and «, the initial loop size.
Following the guidance from recent numerical simulations
[39,40], we focus on the largest loops produced by the
network, fixing a, = 0.1, as these dominate the GW
emission. String loops emit at normal oscillation mode
frequencies, allowing us to express the frequency measured
today from mode k with emission time 7 as

ald) 2%
= alig)agti —TGaGi =1

(2)

where ¢ is the current time. The GW abundance can be
computed as a sum over individual emission modes

S () = 3490l (7). 3)

k=1

where the total emission rate I' is found in simulations
to have the value I'~ 50 [39-43], and we assume that
this is dominated by emission from cusps with I'K) =
Tk=@#/3) /(5°%_ m=(*#/3)) [34]. We truncate the sum in
Eq. (3) at 10° modes, beyond which we approximate it
with an integral that guarantees good accuracy also for the
high-frequency part of the spectrum [44-46]. The contri-
bution of each emission mode in Eq. (3) has the form
(see Ref. [34] for details)

_t6r_(0.)(Gw? 1
3Hjas(a, +TGy) f

<[t () (G) e
@

In evaluating the scale factor a(f), we use the number of
degrees of freedom predicted by the standard model as
given by microMEGAS [47]. The lower integration limit
corresponds to the network formation time, which can be
assumed to be an arbitrarily small number for our purposes,
as it only controls the high frequency cutoff of the
spectrum, whereas we are mostly interested in the low-
frequency peak. [48] We calculate the C; factor control-
ling the loop number density in Eq. (4) using the velocity-
dependent one-scale (VOS) [36-38,51,52] model as in
Refs. [33,34] which gives Cgr = 5.4 and 0.39 during
radiation and matter domination, respectively. These values
agree quite well with the values predicted by recent
numerical simulations [39,40,53-55]. Finally the additional
factor 0.1 comes from the same simulations, which find that
only this fraction of energy goes into large loops that
produce GWs efficiently, whereas the rest goes into the
kinetic energy of small loops that is then lost to redshifting.

Connection with experimental results.—The most recent
experimental results from 12.5 yr of NANOGrayv data [12]
are expressed in terms of a generic power-law signal with
characteristic strain given by

QG (f)

he(f) = A (f) (5)

where fy, =1 yr~!. The abundance of gravitational waves

has the standard form, which can also be recast as a power
law:

2 2 B 5—
() = s Phetr? = (L) = 2. (L) 7. 0

where
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FIG. 1. Cosmic string spectra (solid blue curves) together with
our fitted power laws for Gu = 4 x 10~!!. The green-dashed lines
show the results of numerically fitting the curves, while the
orange lines result from the simple logarithmic derivative in
Eq. (8). The thin gray lines indicate the frequency range of
interest that was used in the NANOGrav linear fit.
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The experimental analysis was cast in terms of the power
law found in the timing-residual cross-power spectral
density y =3 —2a = 5 — f3, and we adopt this notation.

In order to make connection with the experimental
results, we approximate the cosmic string spectra with
power laws in the range of frequencies where the possible
signal was observed. The simple power-law approximation
used by NANOGrav [12] was fitted to 5 bins covering
roughly f € (2.5 x 107, 1.2 x 107%) Hz, with the higher-
frequency bins still seemingly dominated by noise in the
data. To estimate the prospective cosmic string signal for
any given value of Gy, we fit numerically a power law, see
Eq. (6), to the calculation of the spectrum described above
in the range of interest. We show an example of this fit for
Gu = 4 x 107" in Fig. 1. However, as also as we also see
in the plot, we find that a very good approximation is
obtained by simply taking a logarithmic derivative of our
cosmic string spectrum to find the slope

dlog QS%v(f)’
dlogf |y,

3H2QCS ; . *5—}/
i[5 Gw<f><§ry/f> s

at the reference frequency f, ~ 5.6 x 10~ Hz

We show in Fig. 2 the resulting values of y and A for a
range of Gy values of interest overlaid on the NANOGrav
fit to their 12.5 yr data [12]. We find that values of the string
tension Gu € (4 x 107'1,10719) give results within the
68% CL range of the NANOgrav fit, while Gu €
(2x107",3 x 107'%) make predictions within the 95%
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FIG. 2. The curve shows the slope y and amplitude A of a
power-law signal approximating the calculated cosmic string
spectra, see Eqgs. (6) and (8), with Gu values indicated by the
indicated rainbow colors in the indicated frequency range. The
solid and dashed black lines indicate the 68% and 95% ranges of
(7, A) fitted to their 12.5 yr data by the NANOGrav Collaboration
[12]. The gray vertical line at y = 13/3 represents the slope
expected for SMBH mergers [13], while the points on it mark the
upper limits on the amplitude from previously reported pulsar
timing data for that spectrum.

range. Interestingly, the cosmic string interpretation offers a
slightly better fit than SMBH mergers, which predict
y = 13/3 (shown as the vertical gray line in Fig. 2) yielding
a fit that is at best within the 95% C.L. range but outside the
68% range.

The new NANOGrav 12.5 yr [12] results are in some
tension with previous bounds from PPTA [10] and a
previous NANOGrav analysis of their 11 yr data [11],
though compatible with EPTA data [9]. Figure 3 shows a
comparison of the older constraints with the cosmic string
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FIG. 3. Cosmic string spectra calculated for

£€5x10719 6 x 107%) with Gu € (4 x 1071, 10719) (between
the solid black lines) and Gu € (2 x 107", 3 x 107'0) (between
the dashed black lines) that fit the NANOGrav 12.5 yr data within
the 68% and 95% confidence levels, respectively. We also show
previously reported bounds from PPTA [10], EPTA [9], and
NANOGrav 11 yr data [11].
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FIG. 4. Cosmic string spectra calculated for f €
(1072,200) Hz with Gu € (4 x 1071, 1071) (between the solid
black lines) and Gu € (2 x 107'1,3 x 10719) (between the
dashed black lines) that fit the NANOGrav 12.5 yr data at the
68% and 95% confidence levels, respectively. We also show the
current sensitivity of LIGO O2 as well as its design sensitivity, as
well as the estimated reaches of the other planned and proposed
experiments SKA, LISA, TianQin, AEDGE, AION, ET, and CE.

spectra that provide 68% and 95% C.L. fits to the
NANOGrav 12.5 yr data. The apparent tension is also
visible in Fig. 2, which shows previous PPTA and
NANOGrav upper limits on the amplitude of a y = 13/3
SMBH merger spectrum (vertical gray line) from the earlier
pulsar timing data releases cited above. According to the
NANOGrav Collaboration [12], their new analysis uses
improved priors for the intrinsic pulsar red noise (see
Ref. [56] for a recent discussion). Applying these new
priors to older data would ease the previous constraints and
tend to reduce the tension.

Figure 4 shows the spectra that fit the new NANOGrav
data at the 68% and 95% C.L.s over an extended frequency
range f € (107°,200) Hz. We also show the current
sensitivity of LIGO O2 [27] together with its design
sensitivity goal [24-26], as well as the projected sensitiv-
ities of SKA [14] and the upcoming GW experiments LISA
[15,16], TianQin [17,18], AEDGE [19], AION/MAGIS
[20,57,58], and ET [21,22]. We see all the next-generation
GW experiments should be able to observe cosmic string
signals strong enough to fit the current NANOGrav data.
However, LIGO would, unfortunately not be able to
observe such a signal even after reaching its design
sensitivity [59].

We have focused throughout this section on cosmic
strings that always interchange partners upon crossing, so
that the intercommutation probability p = 1, though this
could be reduced if the strings originated from superstring
theory [31,32]. In a first approximation this just corre-
sponds to the density of strings increasing as p~! for any
given value of the tension, which leads to a similar increase
in the amplitude of the GW signal [64,65]. As a result, the
cosmic string curve in Fig. 2 would simply move up in

amplitude as A « v/Q o /p~'. Since the rainbow curve
passes close to the top of the NANOGrav 68% C.L. region,
there is little scope for decreasing p while maintaining
consistency at the 68% C.L., with Qgwh? increasing by
< 50%. We note, however, that the dependence of the
density on the probability can be milder than the simple p~!
assumption [66], and that the final result is still a matter of
debate [35], so that this conclusion may need to be relaxed.
Before proceeding to our conclusions, we first mention
briefly other possible sources that could potentially fit the
new NANOGrav data. One possibility is SMBH mergers.
However, their rate is uncertain and, as already noted, a
simple model led to the prediction y = 13/3 [13] that is
apparently disfavored by the NANOGrav data, though this
is sensitive to the priors used in the data analysis [56,67].
Another possibility is primordial inflation [15,68], which
leads generically to a flat spectrum with y =5 whose
magnitude is constrained by CMB measurements [69] at
foms ~ 10717 Hz to be orders of magnitude below the
amplitude of the observed signal. The inflationary spectrum
would therefore require modification if it is to fit the
observed abundance at PTA frequencies. This requires
p ~0.68 [70], which gives a spectrum at PTA frequencies
with y ~4.32, a value very close to the SMBH merger
prediction [13] and again seemingly slightly disfavoured by
the current data. A third possibility is a signal from a first-
order phase transition in the early Universe. However, such
a signal typically peaks at a much higher frequency [71,72].
Lowering the frequency requires a transition at a lower
temperature, which is possible only in a model with a
hidden sector decoupled from the standard model [73],
since the frequency cannot be lowered by supercooling
[74,75], and models coupling to the standard model with
such low mass scales would already be observed. Even if a
hidden sector model is capable of accommodating a very
strong phase transition at a very low temperature, one
expects a spectrum at PTA frequencies which has a low-
frequency slope =3 [76] and hence y =2, which is
disfavored by the data. While some exceptions from that
scaling exist, they require either an extremely strong
transition [77] or modification of cosmological expansion
[78], both of which would be extremely difficult to realize
at low temperatures without violating other bounds.
Conclusions.—We have analysed the GW spectra
produced by cosmic string networks, recasting them
numerically as power laws in the frequency range f €
(25%x 107,12 x 1078) Hz of interest to PTA experi-
ments. This allowed us to express the resulting amplitude
and slope as functions of the only free parameter in our
model, which is the string tension Gu. We then use
these results to make contact with the recent NANOGrav
12.5 yr [12] data release, which finds evidence of a
stochastic common-spectrum process, analysed in terms
of power-law modeling, that could be interpreted as a
GW background. We find that a cosmic string tension
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Gu € (4 x 107!1,1071) fits the data within the 68% C.L.
region around the best fit while Gu € (2 x 107!,
3 x 10719) is compatible with the data at the 95% C.L.
Cosmic strings provide a better fit to the current data than a
GW spectrum from SMBH mergers, which can fit the data
at the 95% C.L. but not the 68% C.L. We also show all
next-generation GW detectors including SKA, LISA,
TianQin, AEDGE, AION, and ET will be able to probe
the cosmic string spectra that fit the current data, whereas
LIGO seems unlikely be able to probe them in the absence
of additional cosmological or model features.

A key probe of any GW interpretation of the NANOGrav
data would be the appearance of quadrupole correlations,
which have not (yet) been detected. Beyond this, meas-
urement of a SGWB background compatible with the shape
of spectrum shown in Fig. 4 over a large range of
frequencies would provide crucial confirmation of our
bold GW interpretation of the NANOGrav 12.5 yr data.
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M.L. from the Polish National Science Center Grant
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Note added in proof.—For completeness, we note that other
models have also been proposed as possible explanations of
the NANOGrav data, including Refs. [79] and [80], which
also deal with cosmic strings, as well as explanations
involving primordial black hole production [81], cosmo-
logical phase transitions [82], audible axions [83], inflation
[84], domain walls [85], and possible violation of the null
energy condition [86].
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