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Analogue models of gravity, particularly fluid mechanical analogues, have been very successful in
mimicking the behavior of fields around black holes. However, hydrodynamic black holes are externally
driven systems whose effective mass and angular momentum are set by experimental parameters, and, as
such, no appreciable internal backreaction is expected to take place. On the contrary, we show using a
rotating draining vortex flow that a fluid system of finite size responds to the presence of waves on
timescales much longer than the wave dynamics, which leads to a significant global change in the total
mass of our system. This backreaction is encapsulated by a dynamical metric, raising the possibility of
studying backreaction in analogue black hole spacetimes.
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Introduction.—Analogue gravity, pioneered by Unruh in
1981 [1], is a research program that studies gravitational
phenomena from general relativity (GR) using a wide
variety of nongravitational systems (see Ref. [2] for a
review). Unruh originally considered the propagation of
sound waves through a fluid, and argued that if the fluid
becomes supersonic in some region, the system exhibits a
dumb hole horizon—the analogue of a black hole horizon.
More generally, he showed that the wave equation describ-
ing the propagation of linear fluctuations ϕ through an ideal
fluid is equivalent to the Klein-Gordon (KG) equation,

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ ¼ 0; ð1Þ

describing the propagation of a massless scalar field
on an effective curved spacetime. The effective metric gμν
describing such a spacetime is completely determined by
the properties of the fluid flow under consideration, raising
the intriguing possibility of studying general relativistic
wave phenomena in the laboratory.
Many different analogues have since been investigated in

a variety of condensed matter systems [3–8], including
surface waves on top of a shallow fluid [9]. Although the
analogy was originally conceived to investigate the trans-
Planckian problem associated with Hawking radiation [10],
analogue gravity has enjoyed a number of other successes:
notably surface wave experiments have been used to
measure Hawking radiation [11–13], superradiance [14],
and quasinormal ringing [15].
One particularly simple model of a rotating black hole is

provided by surface waves propagating on a rotating,
draining fluid flow—the so-called draining bathtub vortex

(DBT). Much work has been devoted to understanding
features of this model (e.g., Refs. [16–26]), most of which
relies on the assumption of an inviscid, incompressible,
irrotational fluid in shallow water. Modifications resulting
from the violation of these last two assumptions have been
considered [27,28], and black hole effects (superradiance
[14] and quasinormal ringing [15]) have been shown to
persist under such conditions.
Another common assumption in many analogue gravity

studies is that the waves propagate on a fixed background.
This assumption is necessarily violated in both hydro-
dynamical and gravitational systems, since the fluctuations
drive the evolution of the background through nonlinear
terms in the equations of motion. This process in known as
the backreaction. The usual justification for neglecting
backreaction is that the nonlinear terms appear at quadratic
order in perturbation theory and have little influence on the
fluctuations, which are studied at linear order. However,
since these terms can grow in time, they will eventually
become important in determining the dynamics of the
background. In atmospheric physics, this has widely been
studied under the name wave-mean interaction theory [29]
to predict large scale changes in atmospheric currents
resulting from small perturbations. In studies of surface
fluctuations, it has long been recognized that waves
produce a second order mass flux in the direction of wave
propagation [30], and that this mass flux induces a drift
velocity called the Stokes drift [31,32]. Despite recognition
from the fluid dynamics community, these effects have yet
to be incorporated into the analogue gravity formalism.
In this Letter, we study the backreaction in an analogue

black hole simulator by scattering surface waves with a DBT
vortex. While the backreaction is to be expected in any
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nonlinear system, it normally proceeds via a small local
change in the background parameters. By contrast, we show
that our system exhibits a significant global change in one of
the background parameters: the total fluid mass. We dem-
onstrate theoretically that this can be explained by way of the
wave induced mass flux across the open boundary of a finite-
sized system. Because of the analogy with black hole
physics, this process induces a secular evolution in the
effective metric, which occurs over much longer timescales
than oscillations in the waves. Consequently, Eq. (1) holds
over the full evolution and the description in terms of an
analogue metric is applicable throughout. Hence, our system
lends itself as a promising candidate for studying the
backreaction due to superradiance and Hawking radiation.
Theory.—The system we are considering is a stationary

draining fluid flow, where water enters a tank via an inlet
and exits at a drain in a continuous cycle. Such a setup has
previously been employed as a simulator for black hole
superradiance [14] and ringdown [15] processes. For
simplicity, we assume cylindrical symmetry about the drain
and adopt polar coordinates ðr; θ; zÞ centered on the drain.
Water occupies a region z ∈ ½0; H� in the vertical direction.
The area of the tankA (in the direction perpendicular to the
vertical) is assumed constant and is bounded by the surface
γ. For an incompressible fluid with density ρf ¼ const, the
system is fully characterized by the water height H and
velocity field V. Let γ be comprised of the surfaces r ¼ r1,
encircling (and nearby) the drain, and r ¼ r2, which forms
the outer wall of the tank. We assume the inlet condition is
specified on a small section of r ¼ r2, but any θ depend-
ence introduced is confined to a small layer at the edge of
the tank which we neglect.
Now consider fluctuations (i.e., surface waves) described

by ðh; vÞ, which are switched on at t ¼ 0 and are created
inside A. It is well known [30] that linear surface waves
propagating on a background flow produce a mass flux j in
the direction ofwave propagation (which in our case is in the
plane ⊥ to the vertical). If the background ðH;VÞ is
stationary for t < 0, then shortly after the onset of waves,
the amount of mass M contained within the system will be
altered if there is a net mass flux j⊥ ¼ ρfv⊥ over γ,
according to

_M ¼ −
Z
γ
ρfhv⊥ · dl; ð2Þ

where the overdot denotes the time derivative and dl ¼ rdθ.
The assumptions involved in the derivation of this formula
are detailed in Appendix A of the Supplemental Material
[33]. Furthermore, sinceM ¼ ρf

R
A HdA, a change in total

mass results in a change in the water height. If we assume
thatH is approximately level overA (i.e., spatially uniform),
then the water height adjusts according to

_H0 ≃ −
1

A

Z
γ
hv⊥ · dl; ð3Þ

where subscript 0 indicates that strictly a quantity is
evaluated at t ¼ 0. Expanding HðtÞ around t ¼ 0 gives

HðtÞ ¼ H0 þ _H0tþOðt2Þ: ð4Þ

The Oðt2Þ corrections become significant once changes to
the background become large, which means that terms
quadratic in the background variables also contribute to
Eq. (3). Once this happens, the t dependence of H and V⊥
becomes interlinked and to solve the coupled system, one
must use a second equation (the equation of momentum
conservation) in addition to the equation of mass conserva-
tion which is used in the derivation of Eq. (2). Although we
do not attempt this here, we expect this to produce
exponential behavior of HðtÞ at late times, since _H will
depend on the value of H.
Near t ¼ 0, fluctuations of frequency ω perceive a quasi-

stationary background and may be written,

fðt; θ; r; zÞ ¼
X
m

fmðr; zÞeimθ−iωt; ð5Þ

where f is a placeholder for ðh; vÞ and we have also used
our assumption of cylindrical symmetry to make a decom-
position into modes of azimuthal number m ∈ ð−∞;∞Þ.
Using this ansatz, Eq. (3) becomes

_H0 ¼ −
2π

A

X
m

1

2
Re½h�mvm� · rjr2r1 ; ð6Þ

where � denotes the complex conjugate and we have
dropped the subscript ⊥ on the velocity perturbation for
conciseness. At r ¼ r2, vm · er vanishes everywhere except
at the inlet, where we assume a rapid influx of water
(exceeding the propagation speed of the fluctuations)
required to drive the high flow velocities. Therefore, since
the fluctuations are generated inside A, the total mass flux
receives no contribution at r ¼ r2 and is determined solely
by the form of the fluctuations at r ¼ r1. In Appendix B of
the Supplemental Material [33], we show how Eq. (6) can
be evaluated in the shallow water regime for a DBT vortex.
This system exhibits an effective horizon at r ¼ rh which
we take as our inner boundary.
Experiments.—To test the prediction of a linear decrease

of the water height, see Eqs. (4) and (6), and also to observe
how long this behavior holds, we scatter monochromatic
surface waves with a DBT vortex in a controlled experi-
ment. The vortex is generated by pumping water at flow
rate Q into a rectangular (2.65 m× 1.38 m) tank and
allowing it to drain through a hole of radius d ¼ 2 cm
located in the center. Once the vortex is in equilibrium
(determined by the constancy ofQ andH0) monochromatic
surface waves are generated using a series of electrically
controlled pistons. The change in water heightΔH¼H−H0

is determined by illuminating the free surface with a laser
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sheet and tracking its average position with a high-speed
camera. More details of the method can be found in
Appendix C of the Supplemental Material [33].
In Table I of Ref. [33], we summarize the parameters

used in each experiment. We display the measured ΔHðtÞ
profiles in Fig. 1. In experiment 1 (panel A) we verify the
linear decrease of H at early times predicted by Eq. (4). In
experiment 2 (panel B) we test the frequency dependence
of Eq. (6) by varying the frequency from 2 to 4 Hz, finding
no significant variation of _H0 within this range. In experi-
ment 3 (panel C) we demonstrate that at late times the
behavior of HðtÞ deviates from a linear decline.
For the results of the first two experiments, we fit ΔHðtÞ

with the linear decline predicted in Eq. (4) to provide a
value for _H0. Since we do not have a prediction for HðtÞ
over the full evolution, we devise a phenomenological
model which has the expected behavior at early and late
times, i.e., linear then exponential,

HðtÞ¼H0þ
1

2
_H0ðtþ tcÞ− _H0τ log

�
2cosh

�
t− tc
2τ

��
: ð7Þ

The extra parameters are the time tc at which the evolution
switches from linear to exponential, and the exponential
decay time τ. Strictly speaking, this model has linear
asymptotics in the limit t → −∞. However, the behavior
at t ¼ 0 is well approximated as linear provided tc > τ. The
parameters obtained from the fits are also contained in
Table I.
Discussion.—Across all experiments, we find linear

behavior at early times, lending support to our prediction
in Eq. (4). This behavior persists while ΔH ≪ H0 as
expected, which can be seen by comparing ΔH in Fig. 1
with the corresponding value ofH0 in Table I. The observed
lack of frequency dependence in the second experiment is

supported by computation of Eq. (6) assuming a shallow
water flow (see Appendix B of the Supplemental Material
[33]), which predicts that the value _H0 only varies by ∼1%
over the range f ∈ ½2; 4� Hz. Furthermore, by comparing the
gradients across the different experiments we see that _H0

depends on H0, supporting our claim that the late time
behavior should be exponential. This is further evidenced by
the late time tail in experiment 3.
In Fig. 2, we compare a simulation of the shallow water

wave equation [see Eq. (B5) of the Supplemental Material
[33] ] forH0 ¼ 2 cm and f ¼ 2 Hz with the scattered wave
from experiment 2 for the same frequency. A mathematical
justification of our inviscid, shallow water treatment for this
particular experiment can be found in Appendix C of the
Supplemental Material [33]. This treatment is corroborated
by the clear similarities between experiment and simulation
in Fig. 2. The scattered wave in our setup was measured
using the air-water interface sensor described in Ref. [14]
and for the simulation, we used the flow parameters
C ¼ 0.013 and D ¼ 0.001 m2=s with the velocity profile
in Eq. (B2) of the Supplemental Material [33]. These values
were chosen to be similar to that found from the flow
measurements of Refs. [14,15], which involved the same
experimental apparatus, and the precise values were tuned
tomatch the number ofwave fronts on the left and right sides
of the images [44].Using the formof the perturbations on the
horizon, which requires knowledge of the transmission
coefficient (see Appendix B of the Supplemental Material
[33]), Eq. (3) predicts _H0¼−0.011mm=s. Comparing with
themeasured value _H0 ¼ −9.8� 0.2 × 10−3 mm=s from in
Table I, we find good agreement, despite the violation of
H ≠ HðrÞ and ∇ × V ¼ 0 (also assumed by our prediction)
in the vortex core where the horizon is located (see
Appendix C of the Supplemental Material [33] for further
discussion).
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FIG. 1. The height change ΔH in a DBT resulting from wave incidence. The dashed vertical line indicates when the first wavefront
passed the vortex. In experiment 1 (panel A), we find a consistent decrease in the water level when sending waves of frequency
f ¼ 4 Hz. We have plotted the average over three different repeats of the same experiment, and the error bars represent the standard
deviation. In experiment 2 (panel B), we find similar behavior when sending waves of varying frequencies. The model is fitted to the
average of the three datasets. In both experiments 1 and 2 we use the linear model in Eq. (4). In experiment 3 (panel C) we record the
height change over a longer period of wave stimulation, finding good agreement with the heuristic fit in Eq. (7) which has exponential
behavior at late times. Parameters obtained from the fits can be found in Table I.
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To relate the effect we have observed to the backreaction
in GR, consider the following. For slowly evolving back-
ground, one can adopt different timescales for the back-
ground and the fluctuations (i.e., a Born-Oppenheimer
approximation [45]). In this approximation, which is also
employed to study the backreaction in GR [46], the
fluctuations of a shallow water, irrotational fluid obey
Eq. (1), with the components of the evolving effective
metric given by

gμν ¼
�−ðgH − V⊥;iVi⊥Þ −V⊥;i

−V⊥;j δij

�
; ð8Þ

where the indices i and j run over spatial dimensions,
δij is the Kronecker delta function and the t dependence
enters via HðtÞ and V⊥ðtÞ ¼ Vi⊥ðtÞei. In our analysis,
we have estimated only HðtÞ a short time after
the beginning of wave incidence and the full dynamics
of HðtÞ and V⊥ðtÞ warrant further investigation.
Furthermore, since the energy and angular momentum
density of the shallow water background flow are
given by E ¼ 1

2
HV2⊥ and L ¼ Hr × V⊥, respectively, a

change in H corresponds to changes in both E and L.
Therefore, the height change mediates the exchange of
energy and angular momentum between the waves and
background.
Although the analogy persists at the linear level, the

backreaction equation, describing how the effective metric
evolves, is specific to the equations of motion of the system
under consideration, which are the Euler equations for ideal
fluids and the Einstein equations in GR (different back-
reaction equations have been studied, for example, in
Refs. [46–49]). Despite this, it may still be possible to
learn about generic features of slowly backreacting space-
time geometries using analogue systems. In addition, it is

possible extract scattering amplitudes from changes in
global parameters (here the water height) for controlled
scattering processes, e.g., scattering of waves with a single
azimuthal wave number.
Conclusion.—In this work, we have studied the back-

reaction of surface waves on a draining vortex flow. Our
results demonstrate that surface waves interacting with an
initially stationary vortex will trigger the evolution of the
background out of equilibrium. Because of the flow being
externally driven, it was previously unclear whether the
background had the freedom to adjust to the presence of
waves in analogue gravity simulators. Our findings show
that the backreaction is indeed observable, and that the
system does in fact have freedom to redistribute energy and
angular momentum between the incident waves and the
background flow. In the shallow water regime, we have
argued that this evolution is encapsulated by a dynamical
effective metric. Although this metric does not evolve
according to the Einstein equation, further similarities
between slowly evolving gravitational and analogue space-
times have yet to be investigated.
This realization is important for a number of reasons.

First, one must ensure that any wave effects (e.g., stimu-
lated Hawking radiation, superradiance, and quasinormal
ringing) are measured on a timescale much shorter than the
time it takes for the background to change, so that the
assumption of a stationary background is not violated. This
may restrict the frequency range one can probe in an
analogue gravity experiment, as nonlinear effects will
influence the low frequency behavior which takes places
over longer timescales. Second, the effect we have
described is a global (as opposed to local) phenomenon.
Thus, one can use the asymptotic value of the water height
to obtain insight into scattering processes, similar to the
role that the black hole mass plays in GR.
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FIG. 2. Comparison between a scattered f ¼ 2 Hz wave produced under the conditions of experiment 2 (left) and the prediction from
a simulation of the shallow water equations for an irrotational vortex with a flat free surface (center). A plane wave is generated at x < 0
and propagates toward x > 0. The vortex rotates counterclockwise. On the left, the curvature of the free surface near the drain is too large
for our detection method to resolve, and hence we exclude data points for r < d. The similarity between the two images is apparent,
thereby supporting our simplified theoretical treatment. We also display the transmission coefficients T m (right) obtained from the
simulation, which enter into the equation for _H0 via the transmitted wave amplitude jAh

mj ¼ T mðga=ωÞð2πω=cÞ−1=2 [see Eq. (B8) in the
Supplemental Material [33] ]. Therefore, only the low lying m modes (and mainly those with m ≤ 0) contribute to ΔH.
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Based on previous experience, a similar behavior is
expected to occur in suitable quantum systems, and thus
our findings suggest that analogue gravity experiments can
be used to cross validate backreaction models in a relativ-
istic setting. This is an area of research where lack of
experimental input is stalling theoretical development.
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