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We perform general-relativistic simulations of charged black holes targeting GW150914. We show that
the inspiral is most efficient for detecting black hole charge through gravitational waves and that
GW150914 is compatible with having charge-to-mass ratio as high as 0.3. Our work applies to electric and
magnetic charge and to theories with black holes endowed with U(1) (hidden or dark) charges. Using our
results, we place an upper bound on the deviation from general relativity in the dynamical strong-filed
regime of Moffat’s modified gravity.
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Introduction.—According to the “no-hair” conjecture
[1–6], general-relativistic black holes are described by four
parameters: mass, angular momentum, and electric and
magnetic charge. It is assumed, often implicitly, that
astrophysical black holes have negligible charge because
of the expectation that they would quickly discharge due to
the interaction with a highly conducting gaseous environ-
ment or by the spontaneous production of electron-positron
pairs [7–12]. However, observational data unequivocally
supporting this expectation are currently absent, and any
existing constraints on black hole charge depend crucially
on the assumptions of the models employed (e.g., [13,14]).
Gravitational-wave observations offer a model-independent
path to constraining the charge of astrophysical black holes.
The electromagnetic fields influence the spacetime, altering
the gravitational-wave emission compared to an uncharged
binary. These deviations are accurately modeled in
Einstein-Maxwell theory and are potentially detectable
by Laser Interferometer Gravitational-Wave Observatory
(LIGO)-Virgo and future gravitational-wave observatories.
As we will discuss below, the word “charge” here is an
umbrella term that includes, among other things, electric or
magnetic charge, dark charge, or gravitational charge due to
modifications to general relativity.
In this Letter, we initiate a robust program for con-

straining black hole charge by combining LIGO-Virgo
observations with novel numerical relativity simulations.
Our focus here is on event GW150914 [15]. (The
possibility that GW150914 involved charged black holes
has been invoked [16–18] to explain the observation of a
coincident electromagnetic signal by the Fermi-gamma-
ray-burst monitor [19,20]. This association is debated as
others satellites did not detect the event [21–24].) Using the
event’s sky location and the calibrated LIGO noise, we
compute the “mismatch” (defined later) between the
uncharged case and various charged ones. The observed

signal-to-noise ratio sets a threshold mismatch above which
two waveforms are distinguishable [25–28]. Hence, assum-
ing that the observed waveform is described by uncharged,
nonspinning black holes, we find the minimum charge that
would be detectable by LIGO.
For uncharged binaries, when black hole spin is

neglected and the mass ratio is fixed, knowing one “mass”
parameter determines the entire gravitational waveform.
We will use here the “chirp mass” M [29]. In the case of
inspirals of charged binaries, this parameter can be degen-
erate with the charge itself [30–33]. This can be understood
as follows: In Newtonian physics, gravity and electromag-
netism are both central potentials, so the electrostatic force
can be accounted for by introducing an effective Newton
constant G̃. Consider two bodies with mass m1, m2 and
charge q1 ¼ λ1m1, q2 ¼ λ2m2 (λ being the charge-to-mass
ratio); the dynamics of the system is indistinguishable from
one with uncharged bodies with gravitational constant
G̃ ¼ ð1 − λ1λ2ÞG. Since the relationship between chirp
mass and gravitational-wave frequency evolution involves
Newton’s constant, introducing charges corresponds to
rescaling the chirp mass while keeping G fixed. This
degeneracy is broken by electromagnetic radiation reaction
and the field self-gravity.
Adopting the effective Newton constant approach, pre-

vious studies [30–35] constructed Newtonian-based wave-
forms by considering the Keplerian motion of two charged
bodies and accounting for loss of energy via quadrupolar
emission of gravitational waves and dipolar emission of
electromagnetic ones. The authors of [31] computed the
bias in the binary parameters due to the charge-chirp mass
degeneracy. With similar tools, Wang et al. [35] performed
a full Bayesian analysis with Gaussian noise to place
preliminary constraints on charge using events in the first
gravitational-wave transient catalog [36]. Alternatively,
the dipole can be constrained directly by adding a −1
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post-Newtonian (PN) term to describe the loss of energy
due to dipole emission [35], as first done for modified
theories of gravity [37]. In [37,38], it was found that the
dipole can be constrained more effectively in the inspiral
(also noted in [30,33] with explicit reference to charges).
One of the main limitations of these (post-)Newtonian
methods is that they strictly apply only to the early inspiral.
However, binaries like GW150914 are in the regime where
numerical relativity simulations are necessary for accurate
modeling [15]. Therefore, existing constraints on black
hole charge in events where only a few orbits to merger
have been detected are at best preliminary. Moreover, the
effective Newton constant approach does not capture the
physics in cases when only one of the two components is
charged, and when the dipole moment vanishes, these
previous approaches do not treat quadrupole electromag-
netic emission. This is very important because, as we
demonstrate here, it is binaries with near vanishing dipole
moment that place the weakest constraint on black hole
charge.
A second avenue for constraining black hole charge is

through the ringdown signal. In the context of mergers of
charged black holes, this was first studied in [30,33] in the
limit of small charge, using the method of geodesic
correspondence. Via a Fisher matrix analysis, it was noticed
that the ability to constrain charge depends strongly on the
signal-to-noise ratio, so GW150914 cannot be used to place
strong bounds on the charge-to-mass ratio λ of the final
black hole. However, as the authors remarked, these results
should be considered only as qualitative, since higher-order
terms in λ were neglected.
Instead of using approximations, here we solve the full

nonlinear Einstein-Maxwell equations, extracting accurate
gravitational waves to overcome the shortcomings of
previous approaches. We perform numerical-relativity
simulations of black holes with (1) same charge-to-mass
ratio (which we will indicate with λþþ), (2) same charge-to-
mass ratio but opposite sign (λþ− ), and (3) only one charged
black hole (λþ0 ). Einstein-Maxwell theory has no intrinsic
scale, so our simulations scale with the total Arnowitt-
Deser-Misner (ADM) mass of the systemM [39]. Thus, we
can explore arbitrary chirp masses with each simulation.
We compute the mismatch between gravitational wave-
forms generated by charged and uncharged binaries with a
range of different masses to account for the degeneracy:
black hole charge is constrained when the mismatch is
larger than a value set by the signal-to-noise ratio [25–28]
for all possible values of the chirp mass.
An important advantage of our approach is that it

furnishes a first-principles calculation based on fundamen-
tal theories and does not rely on particular models. As a
result, the mathematical formulation we employ has
direct fundamental physics applications. Examples are dark
matter theories (e.g., dark electromagnetism, hidden
sector [31,40–45], or minicharged particles [30,46–53]).

These theories allow black holes to be highly charged, since
neutralization arguments do not apply. Moreover, with a
duality transformation [54], our work also constrains black
hole magnetic charge (e.g., from primordial magnetic
monopoles [55,56]). Our simulations are also useful
for the generation and calibration of gravitational-wave
template banks that target these systems.
Furthermore, our research targets theories of gravitation

where gravity is also mediated by a vector field, like the
scalar-tensor-vector gravity developed in [57] to explain
“dark matter” phenomenology without dark matter. This
theory [also known as Modified Gravity (MOG)], has been
widely studied in the past and can pass several tests, such as
Solar System ones [58] (see also [57,59–67]; for a
summary of the formulation, assumptions, and successes
of the theory, see [62]). MOG features a scalar field that
makes gravity stronger by increasing Newton’s constant
and a Proca field that counteracts this effect in the short
range. When considering systems much smaller than the
galactic scale, the vector field can be considered massless
and the scalar field becomes constant and modifies
Newton’s constant to Geff ¼ Gð1þ αÞ. According to
MOG, a body with mass M has a gravitational charge Q
that is associated with the vector field and is proportional to
M. “Moffat’s prescription” sets the constant of proportion-
ality to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αGeff=ð1þ αÞp

so that the theory satisfies the
weak equivalence principle [68]. In this limit, MOG differs
mathematically from Einstein-Maxwell theory only in
using Geff instead of G, and when α ¼ 0 the theory
becomes general relativity. This rescaling gives rise to
the same degeneracy in the chirp mass and G̃ that we
discussed above in the case of electromagnetism: in
geometrized units, MOG solutions with mass MMOG and
gravitational constant Geff ¼ 1 are equivalent to Einstein-
Maxwell solutions with mass M ¼ MMOGð1þ αÞ
and G ¼ 1. Hence, by scanning through all possible
values of the mass, a constraint on the charge-to-mass
ratio translates in this theory to a constraint on Q=M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α=ð1þ αÞp

.
The results of this work depend on three basic assump-

tions: 1) Einstein-Maxwell theory is the correct description
of charged black holes at the energy, length, and timescales
we are investigating; 2) GW150914 is accurately modeled
by waveforms from uncharged, nonspinning binary black
holes with mass ratio 29=36—the value inferred for
GW150914 [15]; and 3) the black hole spin and binary
mass ratio remain that of GW150914 even in the case of
nonzero charge. Spin and mass ratio may be degenerate
with the charge, so the results presented in this Letter can be
interpreted in two ways: if assumption 3 holds for
GW150914, then our charge limits are upper bounds on
the charge-to-mass ratio of the binary components, other-
wise, they are lower bounds on the charge-to-mass ratio
needed to leave detectable imprints in GW150914-like
events. We will explore the effects of spin and mass ratio in
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future works. To further reduce the parameter space, we
only consider black holes with the same charge-to-mass
ratio bracketing the possibilities. This choice also ensures
the applicability of our results to modified theories of
gravity where the charge-to-mass ratio represents a
coupling constant (as in MOG), in which case only systems
with the same charge-to-mass ratio are relevant (in the limit
we discussed above).
Methods.—We employ the EINSTEIN TOOLKIT [69–71] to

solve the coupled Einstein-Maxwell equations in the 3þ 1
decomposition of four-dimensional spacetime [39,72–75].
We report the general features of our approach here and
leave the details for the Supplemental Material [76].
We performed simulations with charge-to-mass ratio

λ ∈ f0.01; 0.05; 0.1; 0.2; 0.3g with like or opposite charge
for the two black holes (cases that we will designate as λþþ
and λþ− , where the superscript and subscript indicate the
sign of the charge of the primary and the secondary,
respectively) and only one charged black hole (λþ0 ).
These cases are supplemented by an uncharged one (λ00),
a convergence study, and by simulations with λþþ ¼ 0.4,
λþ0 ¼ 0.35, and λ0þ ¼ 0.35.
Full nonlinear evolutions of Einstein-Maxwell systems

have already been performed in the past for head-on
collisions of charged black holes [77,78]. Simulations of
quasicircular inspirals are a nontrivial extension of that, as
the generation of valid initial data with the solution of the
constraint equations [74] is required. In [79] we presented
TWOCHARGEDPUNCTURES, which solves this problem by
adopting an extended Bowen-York formalism [80–82] and
allows the generation of arbitrary configurations of charged
black holes. We fix the initial coordinate separation to
12.1M and we choose the black hole initial linear momenta
to yield a quasicircular inspiral using a 2.5 PN estimate
after rescaling G to G̃.
We evolve the spacetime and electromagnetic fields with

the open-source and well-tested LEAN and PROCAEVOLVE
codes [83–86]. LEAN implements the Baumgarte-Shapiro-
Shibata-Nakamura formulation of Einstein’s equation
[87,88], whereas PROCAEVOLVE evolves the electromag-
netic vector potential with a constraint-damping scheme for
the Gauss constraint. The evolution is on Cartesian CARPET

[89] grids where the highest resolution is approximately
M=65, with M being the binary ADM mass [39]. We
extract gravitational waves based on the Newman-Penrose
formalism [86,90], adopting the fixed-frequency integra-
tion method [91]. We decompose the signal into −2 spin
weighted spherical harmonics and focus on the dominant
l ¼ 2, m ¼ 2 gravitational-wave mode.
Two waveforms are considered experimentally indistin-

guishable if their mismatch is smaller than 1=ð2ρ2Þ
[25–28], with ρ being the signal-to-noise ratio. For
GW150914, ρ ¼ 25.1 [92], so the threshold mismatch
above which two signals are distinguishable is approxi-
mately 8 × 10−4. We calculate the mismatch between

strains h1 and h2 as 1 −maxOðh1; h2Þ, where Oðh1; h2Þ
is the overlap between the two signals (see Supplemental
Material [76]), and the maximum is evaluated with respect
to time shifts, orbital-phase shifts, and polarization angles
[28,93]. The overlap calculation is performed in the
frequency domain. We consider LIGO’s noise curve at
the time of GW150914 detection and adopt the GW150914
inferred sky location. For the uncharged signal, we set a
source frame ADM mass M ¼ 65 M⊙, and a luminosity
distance of 410 Mpc, corresponding to cosmological red-
shift of ≈0.09 [94]. In the Supplemental Material [76], we
discuss how different choices for these parameters affect
the results. To account for the charge-chirp mass degen-
eracy, we compute the mismatch between gravitational
waves from uncharged black holes and the ones from
charged systems with different chirp masses M. To vary
the chirp mass, we rescale M by a factor that we indicate
with M=M00, where M00 is the chirp mass of the
uncharged simulation. We estimate the error on the mis-
match by comparing simulations at different resolutions.
Results and discussion.—The mismatch between a

charged and the uncharged binary grows with the
charge-to-mass ratio λ. So, we may place an upper bound
on the charge by finding the value of λ at which the
minimum mismatch (as we vary the chirp mass) is larger
than 8 × 10−4. We find that, assuming negligible spin and
mass ratio of 29=36, GW150914 constrains λ to be smaller
than

λþþ ¼ 0.4; λþ− ¼ 0.2; and λþ0 ¼ 0.35: ð1Þ

Regardless of the value of the spin and the mass ratio,
Eq. (1) provide lower bounds on λ needed to have
detectable effects in GW150914-like events.
In our simulations, we always endow the more massive

black hole with positive charge. Since the mass asymmetry
of the system is small, we expect our conclusions to remain
the same in the opposite case. The simulation with λ0þ ¼
0.35 confirms this expectation: the computed minimum
mismatch differs by 10% from the λþ0 ¼ 0.35 case. Thus,
the effect of the mass asymmetry is small.
In Fig. 1, we show the mismatch between the uncharged

simulation and charged ones as a function of the rescaling
factorM=M00 for the chirp mass. The figure has three sets
of curves. Solid curves represent the mismatch computed
on the entirety of the signal (i.e., all frequencies are
included). In the top panels, these curves have minima
below the threshold mismatch (horizontal solid line) for
some value ofM=M00jmin. Thus, gravitational waves from
these charged configurations are indistinguishable from the
signal that we adopt as true for GW150914. The opposite
holds in the bottom panels. Therefore, under the assump-
tions of our study, GW150914 is compatible with involving
charged black holes with Q=M up to about 0.3. The noise
curve adopted plays an important role: if instead of the

PHYSICAL REVIEW LETTERS 126, 041103 (2021)

041103-3



realistic one, we consider the zero-detuned-high-power
noise curve [95], the mismatch increases by a factor of
about 3, making the top panels in Fig. 1 incompatible with
the observation and, hence, distinguishable. Thus, it is
important to use the realistic noise in these calculations.
Figure 1 reports two additional sets of curves: dashed

lines, representing the mismatch computed including
frequencies below 55 Hz and dotted ones for frequencies
above 55 Hz. In other words, the dashed and dotted curves
are the mismatch that would be computed if we had
detected only the inspiral or only the plunge and merger
phases. The frequency of 55 Hz marks conventionally the
end of the inspiral phase [96]. Including a larger range of
frequencies decreases the minimum mismatch (from
dashed lines to solid). Hence, previous studies focusing
only on the inspiral overestimate the mismatch and the bias
in the extracted chirp mass.
Figure 1 shows that the mismatch is significantly higher

in the inspiral, suggesting that it is the dominant
contribution in the overall mismatch. Figure 2 further
emphasizes this conclusion: we plot the strain the
Hanford detector would observe, if there was no noise,
i.e., h22Hanford ¼ F×h22× þ Fþh22þ , where F is the detector

antenna pattern [92]. The dashed curves represent
GW150914 and the solid ones are the strains from the
charged simulations, rescaled and shifted to maximize the
overlap. The plot shows that the greatest difference between
charged and uncharged black holes arises in the earlier
inspiral. Thus, signals that stay for a longer duration in
LIGO-Virgo bands allow for stronger constraints on the
charge. All waveforms in Fig. 2 have mismatch with
GW150914 larger than 8 × 10−4; hence the corresponding
charge configurations are incompatible with GW150914.
One of the reasons why the merger þ ringdown phase of

the signal is not as informative as the inspiral is that the
properties of the final black holes do not depend strongly
on the initial charge configuration. In all our simulations,
the mass of the final black hole is the same to within 1%
(Mfinal ≈ 0.96M), and the dimensionless spin differs by at
most 6% (afinal=Mfinal ≈ 0.66). In particular, in our opposite
charge cases, the final mass and spin have subpercent
differences with respect to the uncharged case, and, as
expected from relativistic estimates, the case with same
charge has a lower spin [97]. This result agrees with
[30,33]: a large charge or a large signal-to-noise ratio is
required to extract the charge information from the
ringdown.
Our full nonlinear study supports previous results that

were obtained with parametrized methods. Constraints on

FIG. 1. Mismatch between the strains from uncharged black
holes and from charged ones with chirp mass rescaled by
M=M00. Solid curves are the mismatch including all available
frequencies (the entire signal), dashed ones are only restricting to
the frequency range (23,55) Hz (inspiral) and dotted ones have
frequencies restricted to (55,1024) Hz (merger and ringdown).
The solid horizontal line is the detection threshold for GW150914
(8 × 10−4). The top (bottom) row is the largest (smallest) value of
λ (in our survey) compatible (incompatible) with GW150914.
Red curves (left column) are for the simulation with λþþ ¼ 0.3
(top) and λþþ ¼ 0.4 (bottom), blue (central column) for λþ− ¼ 0.1
and λþ− ¼ 0.2, and green (middle column) for λþ0 ¼ 0.3 and
λþ0 ¼ 0.35. The error bars shown are estimated comparing the
standard resolution simulation with the one at higher resolution.
We report the error bar only at minimum mismatch, but each
point along the curve has the same level of error.

FIG. 2. Comparison between the (2,2) mode of the detector-
response strain for Hanford for the simulations with no charges
(dashed curves) and the ones with it, but with chirp mass M
rescaled with respect to M00 ¼ 28.095 M⊙. Time and phase
shifts are applied to minimize the mismatch between the two
signals. All of these waveforms have two-detectors mismatch
larger than the detection threshold for GW150914 of 8 × 10−4,
mostly coming from the inspiral phase.
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the dipolar gravitational-wave emission were placed
in [37,38] using Fisher matrix analysis based on phenom-
enological waveform models. Translated into an upper
bound on the normalized electric dipole, the constraint
becomes ζ ¼ λ1 − λ2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ1λ2
p ≲ 0.31 [30,35]. Our work

shows that ζ < 0.3 (from the case with λþ0 ¼ 0.3).
However, our work goes further by placing a constraint
on the individual black hole charge.
Our results can also be applied to the so-called theory of

MOG [98]. At scales relevant for compact binary mergers,
this theory replaces Newton’s constant G → Geff and
postulates the existence of a gravitational charge
Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αGeff=ð1þ αÞp

M. The difference in Newton’s con-
stant is degenerate with a change in chirp mass, which we
thoroughly explored. Figure 1 shows that, when λþþ ¼ 0.4,
no matter how the chirp mass is changed, it is not possible
to reconcile GW150914 with the merger of charged black
holes with λþþ ¼ 0.4. Hence, our study directly constrains
α≲ 0.19. This implies that the theory cannot deviate
much from general relativity in the strong field, under
the assumptions made in this Letter.
Conclusions.—In this Letter, we presented fully self-

consistent general-relativistic simulations of the inspiral
and merger of charged nonspinning black holes with mass
ratio 29=36. We considered cases where both black holes
are charged with the same charge-to-mass ratio (λþþ),
opposite charge-to-mass ratio (λþ− ), and only one black
hole charged (λþ0 ). By comparing waveforms from
uncharged systems to those from charged ones, we
addressed the charge-chirp mass degeneracy and found
that, assuming nonspinning black holes with mass ratio of
29=36 for GW150914, λ has to be smaller than

λþþ ¼ 0.4; λþ− ¼ 0.2; and λþ0 ¼ 0.35: ð2Þ

These results hold under the assumption that spin and mass
ratio play a secondary role. Independently of that, Eq. (2)
provides a lower bound on the charge-to-mass ratio needed
to leave measurable effects on the gravitational waves from
GW150914-like events.
We found that the inspiral is the most constraining part of

the signal for charge (Figs. 1 and 2). So, low-mass binaries,
having more orbits in LIGO-Virgo bands, will likely yield
tighter bounds on black hole charge. Our full nonlinear
analysis confirms that it is challenging to constrain
charge from the ringdown phase of merging charged black
holes [30,33].
The bounds found in this study do not apply only to

electric charge, but they can be directly translated to
constraints on modified theories of gravity and exotic
astrophysical scenarios, e.g., dark matter models [30], or
primordial magnetic monopoles [55]. In this Letter, we
applied our findings to Moffat’s scalar-vector-tensor grav-
ity (or MOG) [57] and constrained its α parameter to
α≲ 0.19 (note that α ¼ 0 is general relativity). Here, we

did not consider the effects of black hole spin and the
binary mass ratio, and including these parameters can
introduce degeneracies that make the constraint less strin-
gent. Applications to lower-mass black hole binary detec-
tions may be able to constrain this theory significantly in
the strong-field dynamical regime.
In the future, we will consider systems with spinning

black holes, different mass ratios, and asymmetric charge-
to-mass ratio. With a large enough bank of simulations, we
will produce surrogate models (e.g., [99]) to perform full
parameter estimation of GW150914 and other LIGO-Virgo
events.
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