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Using synthetic lattices of laser-coupled atomic momentum modes, we experimentally realize a recently
proposed family of nearest-neighbor tight-binding models having quasiperiodic site energy modulation that
host an exact mobility edge protected by a duality symmetry. These one-dimensional tight-binding models
can be viewed as a generalization of the well-known Aubry-André model, with an energy-dependent self-
duality condition that constitutes an analytical mobility edge relation. By adiabatically preparing low and
high energy eigenstates of this model system and performing microscopic measurements of their
participation ratio, we track the evolution of the mobility edge as the energy-dependent density of states
is modified by the model’s tuning parameter. Our results show strong deviations from single-particle
predictions, consistent with attractive interactions causing both enhanced localization of the lowest energy
state due to self-trapping and inhibited localization of high energy states due to screening. This study paves
the way for quantitative studies of interaction effects on self-duality induced mobility edges.
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Disorder-induced localization of quantum mechanical
wave functions represents a fundamental change in the
nature of eigenstates [1]. Analog simulators based on
photonic materials [2] and ultracold atoms [3] have opened
up new possibilities for exploring localization phenomena
in coherent and controllable settings. Some of the earliest
observations of localization for both light [4] and atoms
[5,6] were achieved with deterministic quasiperiodic poten-
tials in the Aubry-André (AA) model [7–10]. However, the
AA model is rather fine-tuned and does not manifest a
mobility edge, i.e., energy-dependent localization transition
that separates localized states from extended ones as a
function of energy. Mobility edges are expected to be the
generic behavior of more general quasiperiodic models in
one [11–22] and higher dimensions [23–27], and also
accompany the appearance of delocalized states for models
with short-range disorder in higher dimensions [28].
Recently, mobility edges (MEs) in noninteracting

models have been observed in three-dimensional disordered
systems [29–32], as well as in reduced dimensions with
quasiperiodicity in experiments based on ultracold atoms
[33–35]. In these cases, however, accurate experimental
control over the location of the mobility edge is lacking, as
its analytic functional form is unknown. It is in principle
possible to circumvent this issue in quasiperiodic systems by
exploiting tight-binding models that have an exact mobility
edge that can be derived from an energy dependent

self-duality condition (i.e., the discrete Schrödinger equation
maps back onto itself upon a series of weighted Fourier
transforms from real to momentum space) [13–15,17,
36–39]. Experimental realization of an analytical mobility
edge can help resolve the effects of interactions on the
energy dependent localization transition [18,20,37,39],
which remains a subtle and open theoretical question.
In this work, we experimentally realize a generalized

Aubry-André (GAA) model that has an exact mobility edge
[36] and demonstrate control over the ME physics by
employing synthetic lattices of laser-coupled atomic
momentum modes [40,41]. Crucially, in the absence of
interactions this model has an energy dependent self-
duality that gives rise to the mobility edge. In experiment,
we probe the presence of the ME by measuring the
localization properties of the low and high energy states
of the system, and vary the energy of the ME via a tuning
parameter. We map out localization phase diagrams for
these energy states, demonstrating that the ME is shifted by
atomic interactions but that overall the localization tran-
sitions and the ME survive. Our work showcases the
capacity of cold atoms for the exploration of localization,
MEs, and interactions in quasiperiodic lattice models.
The Hamiltonian realized in this work, Htot ¼

HGAA þHint, involves both the tight-binding GAA model
proposed in Ref. [36] and a contribution due to atomic
interactions. The GAA Hamiltonian is
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HGAA ¼ −J
X

n

ðc†nþ1cn þ H:c:Þ þ
X

n

εnc
†
ncn; ð1Þ

where J is a nearest-neighbor tunneling amplitude, cn
destroys a boson at site n, and the GAA quasiperiodic site
energies read

εn ¼ Δ
cosð2πnbþ ϕÞ

1 − α cosð2πnbþ ϕÞ ; ð2Þ

with quasiperiodicity amplitude and phase given byΔ and ϕ,
respectively. We choose b ¼ ð ffiffiffi

5
p

− 1Þ=2, though the locali-
zation results we present here hold for any irrational number
[36]. The tuning parameter α ∈ ð−1; 1Þ controls the shape of
the potential and the distribution of site energies, as shown in
Fig. 1(a). At α ¼ 0, Eq. (2) reduces to the standard AA form,
with a cosine dispersion and cosine distribution of site
energies leading to an energy-independent localization
transition. For α ≠ 0, the GAA model exhibits an exact
ME at energy E following the relationship [36]

αE ¼ 2J − Δ; ð3Þ

for the positive J and Δ values we consider. For GAA
Hamiltonian eigenstates satisfying Eq. (3), the correspond-
ing Schrödinger equation is invariant under a series of
weighted Fourier transforms between real and momentum
space (i.e., self-dual), which implies the eigenstates are not
localized in either basis and are thus critical.
Atomic interactions enrich the physics of this

system. Low energy s-wave collisions between atoms in
the momentum modes [42] are described by Hint ¼
ðU=2NatÞ

P
i;j;k;l c

†
i c

†
jckcl. Here U ¼ gρ is the mean-field

interaction energy per atom for a sample of Nat atoms
occupying a single mode, ρ is the atomic number density,
g ¼ 4πℏ2a=M is the interaction term,M is the atomic mass,
and a is the scattering length. Here, we consider a

approximate description of the interactions [43], treating
them with a mean-field Gross-Pitaevskii formalism that
considers the interactions as an effectively local intramode
attraction with a collective energy scaleU. We find that this
treatment, while ignoring some details [43], provides a
simple mean-field-level comparison that captures most of
the salient features.
To probe the expected ME of this system, we determine

the localization properties of the GAA eigenstates. We
quantify localization through the participation ratio,
PR ¼ 1=ΣnP2

n, where Pn is the normalized atom population
at site n. The PR effectively counts the number of sites that
“participate” in hosting a state. It ranges from PR ∼ N in
the extended regime to PR ¼ 1 for states localized to a
single site. For α ≠ 0, states on opposite sides of the ME
correspond to PRs close to opposite extremes of this range
[see Fig. 1(b)].
The strong dependence of localization behavior on α can

be understood by considering how this parameter
influences the site energy distribution [see Fig. 1(a)]. For
α < 0, the site-energy distribution is weighted towards
higher energy values. In a heuristic picture, more sites “sit”
on top of potential wells rather than at their bottoms. Thus,
for negative α, a higher (lower) quasiperiodicity strength is
required to induce localization for states at high (low)
energy, as there are many more (fewer) nearby sites to
which they can resonantly hop. For positive values of α, the
complete opposite behavior is found, with the localization
behavior of the high and low energy states swapped. In this
way the ME is directly controllable through the parameter
α, as suggested by Eq. (3).
We experimentally realize the GAA model with control

over α in a synthetic lattice [47] of coupled atomic
momentum modes [40,41]. We start with an optically
trapped Bose-Einstein condensate of ∼105 87Rb atoms. We
then use a pair of counterpropagating lasers (wavelength
λ ¼ 1064 nm) to drive Bragg transitions that can
change the atomic momentum in increments of 2ℏk (with
k ¼ 2π=λ and ℏ the reduced Planck’s constant). While
one of the lasers has a single frequency, the other beam is
engineered to have many distinct components. Together,
these lasers drive a set of two-photon Bragg transitions
that create effective “tunneling links” between the syn-
thetic lattice “sites” (relating physically to modes with
momenta pn ¼ 2nℏk, with n the site index). By inde-
pendently tuning the strength, phase, and detuning for
each of the Bragg transitions, we respectively control the
tunneling amplitude, tunneling phase, and site-to-site
energy difference of each link in the synthetic lattice.
Here, we make use of the generic site energy control to
exactly implement the GAA potential of Eq. (2) on a
21-site lattice for jαj ≤ 0.5 [43]. The direct measurement
of populations at each synthetic lattice “site” is achieved
by performing absorption imaging after a time-of-flight
period.

(a) (b)

FIG. 1. The generalized self-dual Aubry-André model. (a) The
generalized Aubry-André potential and lattice site energies of
Eq. (2) shown for ϕ ¼ 0 and tuning parameter α ¼ −0.5, 0, 0.5,
with corresponding distributions of lattice site energies εn.
(b) Calculated eigenenergies and participation ratios (PRs, in
color) vs α for a noninteracting model just below the critical
quasiperiodicity strength at Δ=J ¼ 1.8 (N ¼ 51 sites). Away
from α ¼ 0, eigenstates localize at different energies, forming a
mobility edge. Dashed black lines show analytically predicted
energy values of the ME [Eq. (3)].
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To explore the presence of a ME, we seek to adiabati-
cally prepare the low and high energy eigenstates of the
system. We initialize population in the central site of a
lattice with all tunneling links set to 0 and with GAA site
energies imposed. The phase term of Eq. (2) is set to be
ϕ ¼ π (0) to ensure that the initial lattice site has the lowest
(highest) energy. We linearly ramp up the tunneling from 0
to a final value of J=h ¼ 625 Hz over 0.75 ms, and hold at
that value for 1.25 ms. At the single-particle level and in its
adiabatic limit, this ramping procedure prepares the lowest
(highest) energy eigenstate of the full Hamiltonian when
initializing at the lowest (highest) energy site in the zero-
tunneling limit [43]. As shown in Figs. 2(a) and 2(b), this
ramp can be viewed as tuning the system from the limit of
infinite quasiperiodicity (Δ=J ¼ ∞, where our initialized
state maps to a localized eigenstate), to a final Δ=J ratio.
This procedure is expected to be robust in the insulating

regime and absent interactions. For our 0.75 ms ramp,
diabatic corrections become important as the eigenstates

hybridize upon encountering a delocalization transition.
While the loading procedure does not faithfully prepare the
eigenstates in the metallic regime, it is well suited to
determining the delocalization transition in the absence of
interactions [43]. Interactions change this picture slightly:
for the GS and for the ES when α ≳ 0, the initialization and
ramping procedures remain mostly intact, with only slight
nonadiabaticities introduced [43]. Our preparation of the
lowest energy eigenstate, or GS, is robust to the presence of
atomic interactions. In contrast, our single-site preparation
does not capture the effect of screening for the ES, and in
practice our prepared ES is in fact a distribution of high
energy eigenstates.
Figure 2(a) demonstrates this procedure performed for

the highest energy state of the canonical AAmodel (α ¼ 0),
demonstrating localization above the critical quasiperio-
dicity strength ðΔ=JÞc ¼ 2 and extended delocalization
below it. By studying the localization properties of samples
initiated to prepare the lowest and highest energy eigen-
states (ground state denoted “GS” and highest excited
state denoted “ES”), we expect to find evidence of an
energy-dependent localization transition when α ≠ 0.
The numerically calculated PR values of the eigenstates
in the non-interacting limit for α ¼ −0.5 are shown in
Fig. 2(b). They illustrate a clear energy dependence in
agreement with the prediction of Eq. (3) (dashed black
line), with the GS and ES localization transitions found
near Δ=J ¼ 1 and Δ=J ¼ 3, respectively.
The experiment features interactions that can shift the

localization transitions away from single-particle predic-
tions. We capture this numerically by solving the Gross-
Pitaevskii equation (GPE) for a homogeneous mean-field
interaction energy of U=h ¼ 300 Hz (U=J ¼ 0.48 in terms
of the final tunneling value) [43]. Interacting GPE simu-
lations of the PR values are shown in Fig. 2(c) as the dashed
blue (yellow) lines for the GS (ES), accounting for the exact
experimental parameter ramp (withU ¼ 0 solid-line curves
included for comparison).
Figure 2(c) shows the energy-dependent localization

behavior for α ¼ −0.5. We plot the normalized PR values,
PR=N, which should range from 1=21 (gray horizontal
line) in the site-localized limit to ≲2=3 in the extended
regime. We observe PR=N values that remain low for a
range of largeΔ=J values, giving way to a sharp increase as
the states delocalize. To note, the experimental PR=N
measurements do not reach the expected value of 2=3
deep in the metallic regime. This is likely due to a
combination of diabatic effects associated with the ramp
(included in the simulation curves) as well as decoherence
between the momentum modes due to spatial separation.
Still, from the distinct separation of the measured locali-
zation transitions for the GS and ES we can infer the
existence of an intervening ME.
Consistent with the GPE simulations, we do not observe

a significant influence of interactions for α ¼ −0.5. The

(a)
(c)

(b)

FIG. 2. Probing localization by adiabatic Hamiltonian evolu-
tion. (a) Cartoon of the experimental sequence. Atoms initially
localized for Δ=J ¼ ∞ are slowly loaded into an eigenstate of the
GAA model at a final quasiperiodicity-to-tunneling ratio Δ=J.
Bar color relates to the normalized participation ratio [see color
bar inset in (b)], for α ¼ 0 and no interactions. Bottom: atomic
momentum distributions, corresponding to populations in the
synthetic lattice, of the ES for α ¼ 0 in the localized regime
(Δ=J ¼ 4.2), near the delocalization transition (Δ=J ¼ 2.1), and
in the delocalized regime (Δ=J ¼ 0.9). (b) Numerically calcu-
lated PRs overlaid on the eigenenergies of the GAA model for
α ¼ −0.5, ϕ ¼ π, and N ¼ 201 sites. High-energy states localize
at larger quasiperiodicity strengths than low-energy states, high-
lighting the presence of the mobility edge of Eq. (3) (dashed
black line). The colors of the energy curves relate to states’ PR=N
values, according to the inset color bar. (c) PR=N vs Δ=J for GS
(open blue circles) and ES (yellow diamonds) under α ¼ −0.5, 0,
0.5. Numerical curves incorporate the exact experimental tunnel-
ing ramp and assume a mean-field energy U=J ¼ 0.48
(U=h ¼ 300 Hz) for the dashed curves and zero interactions
(U=J ¼ 0) for the solid curves. Error bars in (c) denote one
standard error of the mean.
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α ¼ 0 case reduces to the standard AA model. Thus, in the
absence of interactions, all eigenstates should delocalize at
the same critical value ofΔ=J ¼ 2. However, we observe in
Fig. 2(c) that the transition splits for the lowest and highest
energy states, signaling a mobility edge that arises solely
from atomic interactions [48]. For α ¼ þ0.5 [Fig. 2(c)], our
data show an inversion of the mobility edge: the excited
state localizes at a weaker quasiperiodicity amplitude than
the ground state. This inversion is expected due to a
symmetry of the noninteracting Hamiltonian (HGAA),
which exchanges the lowest and the highest energy states
as α → −α (and ϕ → ϕþ π for an exact inversion in a finite
system). For α ¼ þ0.5, we also observe a shift of the
GS localization transition away from the U ¼ 0 theory
prediction.
We find qualitative agreement with the behavior

expected based on the GAA model, observing a ME that
inverts as we go from α ¼ −0.5 to α ¼ þ0.5. However, we
do not observe the simple symmetry between the GS and
ES predicted by the GAA model [Eq. (2)] as α changes
sign. Instead, we find an asymmetric response, with a larger
magnitude of separation between the GS and ES transitions
for α ¼ þ0.5 as compared to α ¼ −0.5 and the appearance
of a mobility edge even for the α ¼ 0 case. These
observations are consistent with interaction-driven shifts
of the transitions and the fact that the interacting GAA
model has an enlarged symmetry, by which the GS and ES
localization properties exchange if we take U → −U as
α → −α. These results demonstrate that, despite inter-
actions strongly breaking the self-dual symmetry of the
noninteracting model, the ME is renormalized and survives
interactions.
Our simple mean-field description of the system’s

effectively local and attractive interactions [42,43,49]
allows us to provide an intuitive picture for how the
localization properties of the GS and ES are, respectively,
affected. For states at low energy, the interaction-induced
chemical potential shifts inhibit delocalization in the
synthetic lattice. This instability towards self-trapping for
attractive interactions [50] shifts the ground state localiza-
tion transition towards lower quasiperiodicity strengths for
all values of α. In contrast, for states at high energy,
attractive interactions can effectively screen the GAA
quasiperiodic potential, thus promoting delocaliza-
tion [50,51].
Figure 3 provides a more comprehensive picture for the

localization behavior of the interacting GAA model,
achieved by studying the GS and ES localization transitions
for a larger set of α values. For the GS and ES, we perform
the same preparation ramps as described for Fig. 2, starting
from the Δ=J ¼ ∞ limit. For each sampled α value, we
determine the “critical” Δ=J at which delocalization
occurs, relating to an increase of the normalized partici-
pation ratio (PR=N) above a threshold value set to 0.19
[43]. The collections of critical Δ=J values, shown

respectively as open (white) diamonds and black disks
for the ES and GS, serve to define the localization-
delocalization boundaries for these states.
In the absence of interactions, these two curves should be

symmetric about an inversion of α → −α, with a crossing at
α ¼ 0 that relates to the absence of a ME in the canonical
AA model. The interactions modify this picture, however.
The crossing of these localization transition lines is shifted
away from α ¼ 0 to α ∼ 0.3–0.4. This is in agreement with
the expectations from the interaction phenomena of self-
trapping and screening.
Beneath the data, we show the simulated difference in

PR=N for the ideal GS and ES with interactions
(U ¼ 0.48J) [52]. This difference of the participation ratios
reveals a behavior similar to what is observed in experi-
ment, such as a shift of the crossing point away from α ¼ 0.
It also indicates a region at large Δ=J in which both states
are insulating and a region at small Δ=J in which both
states are metallic. Finally, it shows two regions in which
mobility edges can be directly inferred based on the
localization of only one of these states.
We note that, while we find fair agreement between the

observed GS localization boundary and the predicted
behavior of the true lowest energy eigenstate, there is
considerable deviation of the experimental ES result. This
discrepancy results from nonideal ES initialization due to
the influence of interactions. In short, our procedure of
preparing eigenstates by initializing population at a single
site in the Δ=J ¼ ∞ limit works ideally when there are no
interactions. It continues to work for the GS when effec-
tively attractive interactions are considered. For the highest
energy eigenstate, however, interaction-driven screening,
which would lead to population at multiple sites, should be
present if the interaction strength U is non-negligible at the
start of the ramp, which is the case in our experiments. Our
initialization procedure thus fails to initialize this screened
maximal energy state, and our prepared ES in fact repre-
sents a collection of high energy states. Our measurement
of critical Δ=J values for the ES that are quantitatively
lower than those predicted for the true ES is consistent with
nonideal state initialization [43]. Still, our results indicate
the observation of a parameter-tunable mobility edge that is
influenced by interactions.
Together, our presented experimental data and the

simulation results can be viewed as the localization phase
diagram for the extremal states of the GAA model with
local, attractive mean-field interactions. Because the
extremal energy states are the first or final state to undergo
a localization transition for increasing Δ, the combined
upper and lower boundaries in Fig. 3 can be viewed as
defining the critical boundaries for the onset of a mobility
edge. This result constitutes the first experimental realiza-
tion of an exact mobility edge by emulating the generalized
Aubry-André model in the presence of interactions [36].
In the future, these results may be extended [53] to allow
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the precise determination of the energy of the mobility edge
in this and other quasiperiodic models [54], as well as to
determine the role of critical wave functions in enhancing
interaction effects [55–59].
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