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Reinforced elastic sheets surround us in daily life, from concrete shell buildings to biological structures
such as the arthropod exoskeleton or the venation network of dicotyledonous plant leaves. Natural
structures are often highly optimized through evolution and natural selection, leading to the biologically
and practically relevant problem of understanding and applying the principles of their design. Inspired by
the hierarchically organized scaffolding networks found in plant leaves, here we model networks of
bending beams that capture the discrete and nonuniform nature of natural materials. Using the principle
of maximal rigidity under natural resource constraints, we show that optimal discrete beam networks
reproduce the structural features of real leaf venation. Thus, in addition to its ability to efficiently transport
water and nutrients, the venation network also optimizes leaf rigidity using the same hierarchical reticulated
network topology. We study the phase space of optimal mechanical networks, providing concrete
guidelines for the construction of elastic structures. We implement these natural design rules by fabricating
efficient, biologically inspired metamaterials.
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Elastic sheets reinforced by beams are pervasive in nature
and engineering. From concrete shell buildings [1] to aircraft
fuselages [2], reinforced shells have found numerous appli-
cations due to their rigidity and efficient use of resources.
Evolution and natural selection have also produced sheet
structures such as plant leaves, which need to remain flat to
maximize photosynthesis [3–6], or dragonfly wings, which
combine light weight and rigidity to enable efficient flight
[7]. Uncovering the design rules behind biologically opti-
mized natural materials may not just impact engineering but
also illuminate their role in evolution.
Efficient design of thin shells is an active research

problem [8–14], and mechanical metamaterials have
emerged as promising candidates for efficient, rigid,
and tunable structures [15–20]. Natural materials are
often characterized by a fractal-like hierarchical organi-
zation. Specifically, the venation of plant leaves is known
to play a crucial role in the transport of water and
nutrients [21], and in the structural rigidity of the lamina
[3,5,6], so as to allow the plant to maximize area for
photosynthesis while being compliant with the wind and
other forces [22,23]. While much work has been done to
characterize the venation networks of dicotyledonous
plants in terms of geometry [24–26], topology [27–29],
and optimal fluid transport [30–35], the mechanical
purpose, properties, and optimality of the venation net-
work beyond the midrib [3,4,36,37] have received less
attention [38]. Recent work points toward the importance
of mechanical traits [39]. Here, we ask to which extent
leaves and similar natural materials may be mechanically

optimized, what rules their natural design underlies, and
how these rules can be applied.
To answer these questions, we consider a model of

discrete beam networks (DBNs) to capture the properties
of natural materials. Specifically, DBNs model bending
beams with arbitrary stiffness that are joined to form an
elastic network. We apply this generic model to the
elasticity of leaf venation. We numerically minimize the
mechanical compliance, maximizing overall rigidity under
natural loads [12], with a resource constraint to model the
cost-efficiency trade-off that these networks are subject to
[25,34,40–43]. We find that optimized mechanical DBNs
exhibit similar structural features as real leaves: a central
midrib and hierarchically branching higher order veins
connected by anastomoses, in close correspondence to
vascular networks found by optimizing for robust liquid
transport [21,30–34,44–46]. Features of the leaf venation
such as the structure of interconnecting anastomoses and
loops are thus naturally explained by mechanical optimi-
zation. We identify distinct topological phases as design
rules of optimal DBNs that lead to substantially improved
rigidity of the network and use these rules to design and
manufacture efficient elastic metamaterials.
The theory of elastic sheets connects curvature to an elastic

energy [47,48] and has been used with great success to model
uniform membranes and shells [49–55]. Methods like top-
ology optimization [12] are tailored for nonuniform continua,
and progress has been made optimizing reinforced elastic
shells [8,9]. We now consider a simple model of beam
networks that captures the discreteness and nonuniformity of
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natural materials. As an illustrative example, take a uniform
cylindrical beam with bending energy [56,57],

Vb ¼
π

8
Ylr4

1

R2
≈
1

2
κ sin2 α ¼ 1

2
κkb1 × b2k2; ð1Þ

where Y is the beam’s Young’s modulus, r is its radius, l is
its length, and R is its radius of curvature. The bending
angle α was introduced by discretizing the beam using
the unit vectors b1;2 and approximating the curvature
[Fig. 1(c), Ref. [58] ]. The constants of proportionality were
combined into the bending constant κ ¼ πYr4=l. It is
possible to find an equivalent formulation of Eq. (1) using
two elastically connected rigid beams.
We introduce a set of unit vectors fe1; e2g at the

midpoint, corresponding to the reference configuration
of the beams [Fig. 1(c)]. An elastic energy penalizing
deviations from this reference is then

V ¼ 1

2
κbkðRe1Þ × b1k2 þ

1

2
κbkðRe2Þ × b2k2; ð2Þ

where R is a rotation matrix. This two-beam energy is
equivalent to Eq. (1) if R is chosen to compensate any
overall rigid rotations, which can be achieved by minimizing
V over R at fixed b [58]. Equation (2) then suggests that the
elastic energy of an arbitrary number of beams elastically
connected at a node i [Fig. 1(e)] can be written as

Vi ¼
1

2

X

b∈Bi

κbkðRiebÞ × bk2; ð3Þ

where the sum runs over the setBi of edges joining at node i,
κb is the bending constant of edge b, and b is the unit vector

pointing from node i to node j along the edge b ¼ ðijÞ.
The node’s equilibrium configuration is given by the local
reference frame febgb∈Bi

and Ri compensates overall rigid
rotations. We now linearize Eq. (3) by expanding both Ri
and b and minimizing over Ri [58]. We find for a network
consisting of N nodes,

V ¼ 1

2
u⊤ðHeq −HorÞu ¼ 1

2
u⊤Hu; ð4Þ

where u is the 3N-dimensional vector of nodal
displacements from equilibrium. The term ð1=2Þu⊤Hequ
is the elastic energy with respect to the fixed equili-
brium frame febg, while ð1=2Þu⊤Horu corrects for overall
rotations [58]. Given any static loads f on the network, the
displacements satisfy Hu ¼ f. At each node, this force
balance can be expressed as fi ¼

P
jðFij − FjiÞ, where Fij

is the force on node i due to the connection to node j, and fi
is the load on node i [58].
While our model applies to generic elastic networks, we

now specialize to leaflike structures. We consider planar
DBNs described by Eq. (4) and embedded in an inexten-
sible lamina. Inextensibility of both beam network and
lamina is implemented to linear order by allowing only
nodal displacements u that satisfy e⊤b ðuj − uiÞ ¼ 0 for all
edges b [51,55,58].
Leaves must remain flat and rigid to present a maximal

area to sunlight for photosynthesis. Thus, we expect the
reinforced scaffolding network to be optimized under the
influence of gravitational or wind load. Maximum rigidity
of a mechanical system under loads f leading to displace-
ments u corresponds to minimum compliance c ¼ f⊤u ¼P

i f
⊤
i ui [12], where fi is the load on node i and ui is its

(c)

(e)(d)(d)

(c)
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FIG. 1. Leaf venation as a discrete beam network. (a) Abaxial surface of a leaf ofMagnolia sp., showing the hierarchically organized
reticulate venation network keeping the lamina flat and rigid, and transporting water and nutrients. (b) Adaxial surface of the same leaf,
emphasizing the venation network embedded in the lamina. (c) Discrete model of beam bending. Dashed orange arrows correspond to
the local reference frame fe1;2g used to construct the elastic energy Eq. (2) with sin2 φ1;2 ¼ ke1;2 × b1;2k2. The reference frame fRie1;2g
compensating overall rigid rotations is shown in blue. (d) Plant leaf venation subject to gravitational load g as prototypical example of a
natural DBN. One large vein branches off into three smaller veins that all bend under the load. (e) DBNmodel of the node from (d). Each
discrete beam joining at the node is depicted with its bending constant by line thickness and color. Deviations from the local reference
(blue) are penalized by Eq. (3).
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displacement. In the following, we minimize the compli-
ance over the set of bending constants κb of the network.
Biological networks are constrained by the amount of
resources available and by the requirement to distribute
them efficiently. Following Refs. [30–33,40,41], we incor-
porate this by introducing the constraint

P
b κ

γ
b ¼ K, where

the parameter γ models the material cost of each beam and
K is the overall cost. A natural material constraint is the
total mass of the network, which for beams following
Eq. (1) corresponds to γ ¼ 1=2. More generally, 0 < γ < 1
leads to an economy of scale promoting sparse networks
[62]. We now focus on this biologically relevant regime.
The optimal κb are encoded in a scaling relation with the

nodal forces [58],

κb ∼ (l2
bðkFijk2 þ kFjik2Þ)1=ð1þγÞ; ð5Þ

where the edge b connects nodes i and j. To avoid local
minima due to the nonconvex constraint, we employ a
numerical optimization algorithm based on simulated
annealing [58]. In the following, we start from a triangular
grid in the x-y plane representing the leaf lamina, which is
attached to a petiole with fixed position and orientation
(Fig. 2, Ref. [58]). The entire leaf is subject to uniform load
in the negative z direction [Figs. 1(d) and 1(e)], such that
the compliance is now proportional to the average dis-
placement. This is a reasonable approximation given
typical leaf mass composition [63]. Including vein self-
loads in this regime does not lead to markedly different
optimal networks [58]. Because the leaf lamina itself is

rigid, we set the bending constants to κ0 þ κb, where κ0 is
the lamina stiffness and the κb are the bending constants of
the network that we minimize over. The inextensibility
constraint is enforced on all edges of the triangular grid
irrespective of their bending rigidity, such that the lamina is
always inextensible to linear order. The cost K is fixed to
the number of edges in the triangular grid, setting the scale
for the κb. We first specialize to the regime κ0 ¼ 10−6 ≪ κb
where the elastic properties are dominated by the venation
network. Here, optimized DBNs are rigid and flat,
decreasing the compliance by a factor of ∼100 compared
to uniform networks [Fig. 3(c)]. Their structure exhibits
the basic features of dicotyledonous leaf venation
[Figs. 2(a)–2(d)], including a hierarchical midrib and
branching and anastomosing higher order veins. This is
also reflected in quantitative topological measures when
comparing to real leaf networks [58]. Mechanically opti-
mized DBNs are structurally similar to distribution net-
works optimizing robust fluid transport [30–34]. This is
due to a connection between hydraulic and elastic leaf
network models, both of which can be seen as conservation
laws (of fluid or force) with a single source and many
sinks. Furthermore, under the inextensibility constraint,
ð1=2Þu⊤Hequ¼P

i;jðκb=l2
bÞðuz;j−uz;iÞ2, where uz;i are

the z components of the displacements [58]. Formally
identifying κb=l2

b with the hydraulic conductivity and the
perpendicular displacements uz;i with the potential, this
part of the compliance has the same form as the power
dissipation minimized for flow networks and encodes only
the weighted network topology. Optimal flow networks are

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Compliance-optimized flat DBNs resemble real leaf venation. We optimized triangular DBNs with N ¼ 217 nodes and
Etriang ¼ 600 edges. (a)–(c) For 0 < γ < 1, optimal networks are sparse and show hierarchical organization and anastomosing
reticulation. (d) At the transition γ ¼ 1, the network becomes highly reticulate and less hierarchically organized. The networks
(a)–(d) were subject to a uniform downward load, the petiole was modeled as one additional node the position of which was fixed, and
overall twists of the petiole were removed. The lamina stiffness was κ0 ¼ 10−6. (e)–(g) Optimal networks reduce to just the main veins as
the lamina stiffness κ0 is increased. (h) An optimal network with the petiole at the center and subject to a uniform upward load. The cost
parameter in (e)–(h) was γ ¼ 1=2, and the lamina stiffness in (h) was κ0 ¼ 10−6. Fixed nodes are shown as red dots, each triangle is
colored by the average nodal compliance f⊤i ui of the adjacent nodes normalized by the maximum, and the line thicknesses are
proportional to κγ=2b .
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known to correspond to topological trees [64], even though
the global optimum may not be hierarchical [65]. Thus, the
geometric term u⊤Horu is responsible for departure from
the tree optima and induces redundant connections in
mechanical networks [58]. This intrinsic elastic mechanism
stands in contrast to flow networks where only explicitly
modeling additional effects such as resistance to fluctua-
tions or damage can induce loops [31,32,49]. When γ > 1,
the optimization problem becomes convex, and a single
global minimum exists, containing a midrib but otherwise
appearing featureless [Fig. 2(d)]. The generic properties of
optimal DBNs remain valid for other boundary conditions
as well [Fig. 2(h)].
We now proceed to study the topological transition from

nonreticulate to reticulate optimal networks. The topology
of planar networks is quantified by the number of loops
L ¼ E − N þ 1, as obtained from Euler’s formula. Optimal
DBNs exhibit three basic topological phases [Fig. 3(a)]. In
the convex regime where γ > 1 and the lamina stiffness
κ0 ≲ 10−2, the optimal networks corresponding to the single

global minimum are maximally loopy. As γ is decreased
below 1, most loops are lost and the optimal networks feature
a small number of loops that is approximately constant over
a wide range of parameter values. Increasing the lamina
stiffness beyond κ0 ≈ 10−2 leads to a gradual crossover into a
loop-less regime, where only main and secondary veins are
reinforced [Figs. 2(e)–2(g)]. These transitions are mirrored in
the number of nonzero bending constant edges E in the
network, with the difference that E gradually decreases as κ0
is increased instead of dropping to zero [Fig. 3(b)].
Surprisingly, the optimal compliance does not vary strongly
with the optimal network topology [Figs. 3(c)]. Instead, the
optimal compliance is largely independent of the lamina
stiffness κ0 and varies strongly only with the cost parameter γ.
Because γ is expected to be fixed by geometry, this suggests
that generically, it pays to invest in an optimized mechanical
network, even if this means only reinforcing the main vein.
Even then, the improvement in compliance is significant
[Fig. 3(c) and 3(d)].
The natural design principles of leaf venation can be

applied to the design of efficient rigid metamaterials. We
additively manufactured networks of connected cylindri-
cal beams based on optimized and uniform DBN topol-
ogies with equal material volume [Figs. 4(a) and 4(b),
Ref. [58] ]. The improvement in rigidity in the optimized
manufactured network is significant, with no bending
or tip displacement discernible [Fig. 4(c)]. This is com-
pared to the uniform network, which bends visibly
[Fig. 4(d)]. This suggests that biologically inspired elastic
networks may provide design principles for discrete
metamaterials.
In summary, we considered a model of discrete beam

networks that is able to naturally represent nonuniform
reinforcing scaffoldings of elastic sheets and networks, and
applied it to leaf venation. We showed that optimal DBNs
minimizing mechanical compliance under a cost constraint
resemble real leaves, including a hierarchical backbone,

(a) (b) (c) (d)

FIG. 3. Topological transition and phase space of optimal DBNs with leaf boundary conditions. Each pixel in the 25 × 25 images
(a)–(c) corresponds to a mean over 10 annealed triangular networks with N ¼ 92 nodes and Emax ¼ 241 edges. (a) Network topology is
encoded in the loop density L=Lmax, where L is the number of loops and Lmax ¼ 150 is the maximum number of loops in the triangular
grid. Gray pixels correspond to L ¼ 0. The dashed and solid lines approximately mark the transitions to maximally loopy and tree
topologies, respectively. (b) Network structure as measured by the number of nonzero bending constant edges E normalized by the
maximum number Emax of edges in the triangular grid. (c) The compliance c of the optimized networks, normalized by the compliance c̄
of a uniform network with identical cost K. The results in (a)–(c) remain qualitatively valid for larger networks [58]. (d) Optimal
networks △,□, ◯, and a uniform network shown with their relative displacements under the same load. The optimal networks are also
marked in panels (a)–(c). Displacements are measured relative to the tip of network ◯.

(a) (b)

(d)

(c)

FIG. 4. Biologically inspired metamaterials for flatness and
rigidity. (a) Additively manufactured metamaterial based on an
optimized DBN topology with γ ¼ 1=2. The vertical size is
11 cm, the material is thermoplastic polyurethane [58]. (b) Meta-
material based on a uniform DBN topology with equal size and
total volume. Beam radii in (a), (b) are proportional to κ1=4b , and
κ0 ¼ 0. (c),(d) Side view of the same networks clamped at the
petiole. The optimized network (c) remained flat. The uniform
network (d) showed a tip displacement of approximately 5 cm.
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anastomoses, and loops between the veins. Using the
principles learned from nature, we designed and manufac-
tured elastic metamaterials.
Our results may have implications for the biology of

leaves and other natural materials with a combined
mechanical and hydraulic function such as dragonfly
wings [7]. The relevance of fluid flow optimization for
leaf venation is well known when rationalizing loops as an
evolutionary adaptation to damage or fluctuations [21,34].
At the same time, the reduction in compliance of optimized
over uniform DBNs is highly significant. Thus, maximiz-
ing stiffness could result in an evolutionary advantage.
Leaves are therefore in the extraordinary position to
optimize two highly disparate requirements, mechanical
rigidity and robust fluid transport, using the same hierarchi-
cally organized, reticulate venation network architecture.
Our results may also offer a connection between the
differing approaches modeling leaf vascular development
as adaptive mechanisms relying on either flow [33,66,67]
or mechanical [68–72] cues. More generally, our work
paves the way for detailed study of optimized mechanical
networks in other biological systems such as actin-myosin
networks [73], active mechanics [74,75], allosteric materi-
als [76], or network control [77].

The author wishes to thank Ellen A. Donnelly for helpful
discussions and the MIT Department of Mathematics for
support.
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