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Simulation studies of the phase diagram of repulsive active Brownian particles in three dimensions
reveal that the region of motility-induced phase separation between a high and low density phase is
enclosed by a region of gas-crystal phase separation. Near-critical loci and structural crossovers can
additionally be identified in analogy with simple fluids. Motivated by the striking similarity to the behavior
of equilibrium fluids with short-ranged pairwise attractions, we show that a direct mapping to pair
potentials in the dilute limit implies interactions that are insufficiently attractive to engender phase
separation. Instead, this is driven by the emergence of multibody effects associated with particle caging that
occurs at sufficiently high number density. We quantify these effects via information-theoretical measures
of n-body effective interactions extracted from the configurational structure.
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Liquid-vapor phase separation and critical behavior are
well-known characteristics of equilibrium fluids which
stem from the presence of attractive interactions among
their atoms or molecules [1,2]. Nonequilibrium many-
particle systems can also display similar features: for
example, assemblies of self-propelled (active) particles
undergo—even in the absence of cohesive forces—a so-
called motility-induced phase separation (MIPS) [3–5]
between a high-density and low-density phase. Mani-
festations of this phenomenon in the form of aggregation
have been observed both in suspensions of motile bacteria
[6] and self-propelled colloids [7].
A key model that captures the essence of the physics of

these systems is active Brownian particles (ABPs) [8],
where the constituents interact via pairwise repulsive forces
in the absence of hydrodynamic interactions [9]. Despite
their nonequilibrium nature, some aspects of ABPs’ behav-
ior can be rationalized in terms of equilibrium concepts
such as a pressure equation of state by incorporating out-of-
equilibrium contributions and modifying equilibrium
physical principles, e.g., by using an altered Maxwell
construction [10–13].
A frequently highlighted feature of active systems is their

“cooperativity,” characterized in terms of the kinetics of the
constituents and the pattern of their orientation in space
[14,15]. Even for the simple case of ABPs, which lack an
alignment mechanism, cooperative motion has been
observed in two (2D) and three dimensions (3D) to give
rise to complex patterns in the bulk and to engender phase
separation [16,17]. Cooperative motion has also been
suggested as a possible cause of the nonmonotonic
response to the intensity of self propulsion—i.e., the
activity—in the relaxation of active glasses [18].
Particle orientations are important to account for co-

operatively and the microscopic explanation of collective

effects in active matter [19]. However, to describe phase
behavior, attempts have been made to construct minimal
coarse-grained models that retain only particle coordinates
or a continuum density profile, similar to simple models of
equilibrium fluids [5,10,20–24]. Within this approach, the
influence of orientational correlations is subsumed into
“effective” interparticle interaction parameters.
In this Letter, we develop further the effective interaction

approach to gain novel insight into phase separation and
cooperativity. We first establish in detail the properties of a
3D system of ABPs including the phase diagram and
critical point, together with features of the single phase
region that also occur in equilibrium liquids namely a
“Widom line” of maximum correlation length [25,26]; a
line of maximum number density fluctuations; and a line of
structural crossover—from exponential to oscillatory—
known as the Fisher-Widom line [27,28]. We observe that
the phase behavior is strongly reminiscent of that occurring
in equilibrium fluids having a very short-ranged pair
potential, with a critical point enclosed by the region of
crystal-vapor phase separation and an order parameter
broadly consistent with Ising universality. However, a
coarse-grained model described by an effective pair poten-
tial derived in the low density limit is completely unable to
account for MIPS. A quantitative analysis demonstrates,
instead, that nonperturbative multibody interactions arise
spontaneously in the active system, promoting effective
attractions that ultimately drive the phase separation.
Previous simulation work has concentrated on 2D ABPs

which display specific features such as an orientationally
ordered hexatic phase [29,30]. The present study broadens
the discussion to 3D ABPs where different phase behavior
is expected [16,17]. In the model, particles interact via
short-ranged, pairwise, repulsive interactions of the Weeks-
Chandler-Anderson potential form with length-scale σ,
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have constant self-propulsion velocity v0 and coupled
translational and rotational diffusivities Dt ¼ Drσ

2=3,
so that only the density ρ and the Péclet number Pe ¼
v0=ðσDrÞ are the relevant control parameters. We first
determine the phase diagram in the ρ-Pe plane. To do so,
the system is initiated in an elongated, periodic simulation
box (slab) with a pair of high-low density interfaces. We
characterize the phases that emerge in the steady state.
Previous work has focused on the MIPS between two
disordered (fluidlike) phases, although studies in 3D also
report the presence of an ordered face centred cubic crystal
at high density and low Pe [17]. We confirm the stability of
the crystalline phase at high Pe, and also trace lines of both
crystal-vapor coexistence and a MIPS binodal to derive a
complete phase diagram, Fig. 1(a).
The onset of MIPS is associated with critical behavior

[16] and it is important to characterize the critical point and
the near-critical region. In simple liquids exhibiting liquid-
vapor (LV) criticality, the single phase region displays
several crossover lines; in particular, lines of maxima of
compressibility and correlation length are found which
emanate from the critical point and serve as a means to
estimate its location. We ask whether analogous features
occur for a motility-induced critical point.
A block analysis [32,33] of the particle number fluctua-

tions allows us to measure a quantity analogous to the
relative compressibility of an equilibrium fluid χ=χideal ≔
ðhN2i − hNi2Þ=hNi, while the decay at large distances of
the total correlation function hðrÞ ¼ gðrÞ − 1 allows us
to determine the bulk correlation length ξ, see the
Supplemental Material [34]. Figure 2(a) shows clearly that

for Pe≳ 10 fluctuations grow with increasing Pe. The loci
of the maxima of χ=χideal and ξ identify two lines in the
near-critical single phase region. Within numerical uncer-
tainty, the crossing of the two lines provides a good
estimate for the location of the critical point: ρc ≈ 0.94
and Pec ≈ 36. In several equilibrium fluids [39] the
supercritical density for which χ=χideal ¼ 1 closely approx-
imates the so-called “Fisher-Widom” line of structural
crossover, between a regime with oscillatory decay of
the correlations to a regime with purely exponential decay,
see Fig. 2(b). This line—Fig. 1(a)—is located at high
densities and points to a structural crossover only close to
the fluid-solid transition as discussed further in [34].
Since the Péclet number plays a role akin to the inverse

temperature of equilibrium system, we follow a previous
proposal [40] and define τ ¼ jPe−1 − Pe−1c j=Pe−1c as the
reduced Péclet number. We can then contrast several
properties of MIPS with the behavior familiar from simple
liquids. We find: (i) that the critical point is located at
particular high densities, resulting in a rather asymmetric
coexistence region (similarly to the 2D case [29,40]);
(ii) that the near-critical region of the binodal can be fitted
with Ising forms Δρi ¼ Aiτ

β with β ¼ β3D Ising ¼ 0.326,
consistent with recent on-lattice modeling of active par-
ticles [41]; (iii) while the coexistence diameter dρ ¼
ðρLD þ ρHDÞ=2 does not vary linearly with respect to Pe,
it does follow a linear relationship with respect to τ,
dρ ¼ ρc þ aτ, as in simple equilibrium liquids [42,43].
Our phase diagram shows that the MIPS region is

enclosed within the region of crystal-vapor coexistence.
Indeed, the overall topology of our phase diagram is
reminiscent of that of equilibrium fluids having very
short-ranged pair interactions [31,44]. Here, the archetypal
system is a colloid (c)- polymer (p) mixture with size
ratio q ¼ σp=σc. q determines the range of effective
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FIG. 1. (a) Phase diagram of 3D ABPs: empty circles corre-
spond to the binodal of MIPS, separating a low density (LD) from
a (HD) fluid; blue circles and hexagons are the fluid (or vapor)
and crystal branches of fluid-solid coexistence; horizontal dashes
are the coexistence diameter, fitted by a rectilinear diameter law
1
2
ðρLD þ ρHDÞ ¼ aτ þ ρc. Lines of maximal ξ (orange), maximal

χ=χideal (green), crossover χ=χideal ¼ 1 (red dots) are also plotted.
(b) Phase diagram of a colloid-polymer mixture with size ratio
q ¼ 0.4 displaying fluid (F) solid (S) and metastable fluid-fluid
coexistence (F þ F) regions parametrized by the colloid and
polymer reservoir packing fractions ηc, ηp, adapted from [31].
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FIG. 2. (a) Estimates of χ=χideal versus ρ. The horizontal dashed
line marks the ideal gas value. (b) Total correlation function hðrÞ
for Pe ¼ 28 measured for a selection of densities in [0.60, 1.20].
A dashed line (orange) shows a representative Ornstein-Zernicke
fit to identify the bulk correlation length ξ. The red profile
corresponds to density ρ ¼ 1.05, where χ=χideal ≈ 1 and the
exponential decay ceases.
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colloid-colloid interactions leading to colloid-rich and
colloid-poor phase separation. When q ≪ 1, the vapor-
liquid binodal becomes metastable with respect to
crystal-vapor coexistence. While in principle an effective
one-component model requires a multibody description of
the colloid-colloid interactions, in practice a short-ranged
pair potential accurately accounts for the phase behavior for
sufficiently small q [45,46].
Inspired by these similarities, we enquire whether it is

possible to construct a coarse-grained effective equilibrium
(or passive) model capable of reproducing the true phase
behavior. An exact passive model will have interparticle
interactions yielding the same probability of observing a
given particle configuration as the active model. In general,
one expects that this requires an effective Hamiltonian
which is the sum of n-body contributions Heff ¼ P∞

n¼2 θn.
Truncating this series at finite n yields an approximate
passive model, e.g., n ¼ 2 is the two-body approximation.
To gain systematic insight into the role of n-body

effective interactions in the passive model, we study
systems containing successively larger particle numbers
N ¼ 2; 3; 4;… in a box of volume V. The N ¼ 2 system
yields an exact effective pair potential W2ðrÞ (see below).
Studies of N ¼ 3 ABPs provide information on three-body
contributions to the effective interactions. Our method
quantifies these not in terms of a three-body interaction
potential θ3 but in terms of the excess free energy of the
exact effective passive model that describes N ¼ 3 ABPs,
compared to that of the approximate passive model of N ¼
3 particles interacting solely via the pair potentialW2ðrÞ. In
a similar way, a study of N ¼ 4 particles yields information
on the four-body contribution to the excess free energy
unexplained by two- and three-body interactions.
Operationally, one computes the 1D probability

distribution function PNðrminÞ to find a minimal inter-
particle separation distance rmin among N ABP particles.
Normalizing by the ideal gas probability yields g0ðrminÞ ¼
PðrminÞ=PidealðrminÞ whose asymptotic value at fixed vol-
ume fN ¼ limrmin→∞ g0ðrminÞ determines the ratio of the
partition function of N particles to that of an ideal gas. The
excess Helmholtz free energy of the exact effective passive
system follows as −kBT ln fN ¼ Fex. The method can also
be applied to measure Fex for the approximate two-body
system of N passive particles. The background to our
method is described in detail in [47] and summarized in the
Supplemental Material [34].
The effective pair interaction W2ðrÞ for N ¼ 2 ABPs is

calculated for a given Pe asW2ðrÞ¼−ln½g02ðrÞ=f2ðVÞ�, with
g02ðrÞ¼P2ðrminÞ=Pideal

2 ðrminÞ and f2¼ limrmin→∞g02ðrminÞ
[47]. The calculation is repeated for several values of Pe
resulting in the forms shown in Fig. 3(a). This reveals that
at low Pe the interaction is essentially repulsive and
gradually develops an attractive well which becomes
deeper as the Pe increases. We note that the range of the
attraction is short compared to the size of the repulsive core,

in accordance with equilibrium models having a similar
phase diagram topology, and that the shape of the potential
is consistent with analytical approximations such as the
unified colored noise approximation, known to reproduce
the interactions in the weak activity regime [24].
Equipped with the forms of WðrjPeÞ, we first enquire

whether the attraction is sufficient to engender phase
separation. Direct simulation with the potential UðrjPeÞ ¼
kBTW2ðrjPeÞ at kBT ¼ 1 demonstrates that this is not the
case: for example, in Fig. 3(b) we show the distribution of
local density around the particles for Pe ¼ 60 and several
total densities well inside the phase separation region, see
Fig. 1. The distributions are unimodal indicating that no
phase separation occurs.
The failure of the effective pair potential to yield phase

separation can be rationalized by analyzing the second
virial coefficient B2 ¼ − 1

2

R ðe−W2ðrÞ − 1Þdr and comparing
its trends with known criteria for phase separation in
equilibrium systems. In simple liquids, the onset of LV
phase separation occurs when B2 ≈ −6veff0 where veff0 is the
volume of an (effective) hard sphere [48,49]. This empirical
criterion is particularly accurate in simple liquids with
short-ranged attractions [50,51]. However, as shown in
Fig. 3(c), B2 for the effective pair potential for our ABP
model never satisfies the criterion even at very large Pe. It
follows that the effective, isotropic, two-body interactions
obtained via coarse graining of the orientational degrees of
freedom do not engender sufficiently strong effective
attractions to induce phase separation. As shown in the
Supplemental Material [34], the same conclusion holds
in 2D.
While one might seek to correct this deficiency by

reintroducing the orientational variables and describing
the interactions via effective anisotropic short-ranged
terms, we find that valuable insight can be gained
by refining our calculations to include higher order
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FIG. 3. (a) The effective pair potentialW2ðrjPeÞ for several Pe.
The inset magnifies the attractive region. (b) Distribution of
local density for equilibrium simulations with pair interaction
W2ðrjPe ¼ 60Þ and increasing ρ displaying a single phase.
(c) Measured values of B2 together with the criterion for phase
separation.
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contributions to the attraction, in the spirit of the multibody
expansions of equilibrium systems [31]. To do so we
compare the form of PNðrminÞ for two systems: the active
system at some prescribed Pe and an approximate passive
system with the pair interaction W2ðrjPeÞ. Specifically, we
accumulate the PDFs Pa

NðrminÞ of the active and Pp
NðrminÞ

of the passive case for N ranging from N ¼ 2 to N ¼ 24 in
boxes of a fixed volume V, such that the number density
ranges from ρ ¼ 0.003 to 0.036σ−3. Comparing active and
passive systems of such small N allows us to study
systematically the effects of successively higher N-body
interactions and demonstrate the emergence of collective
contributions to the attraction that drives MIPS, similarly to
the predictions of effective Fokker-Planck mappings [20].
Figure 4(a) shows that at first sight the passive prob-

ability distribution function closely reproduces the
active ones at Pe ¼ 40. There are nevertheless subtle
differences in the large rmin regime that grow with
increasing Pe and which are key to understanding the
origin of multibody effects. To expose these, we consider
the ratio Pa

NðrminÞ=Pp
NðrminÞ for various N. Results for

Pe ¼ 40 are shown in Fig. 4(b) and reveal that on
increasing N, the active particles are more likely than
the passive ones to be found in close contact—a fact
signaled by a relative depletion of the probability of finding
a particle at large distances. The asymptotic value
limr→∞ PaðrminÞ=PpðrminÞ ¼ faN=f

p
N is shown in Fig. 4

(c) for a variety of choices of Pe. Its logarithm measures the
free energy difference between the “exact” passive model
of N ABPs and the approximate passive model described
byWðrÞ. While at low Pe, faN=f

p
N is close to unity for all the

considered N, at sufficiently large Pe≳ 6, the ratio
diminishes with increasing N. Remarkably, however, the
deviation from unity becomes significant only for N ≳ 12,
i.e., when the number of particles is close to the typical
coordination number of a liquid. This suggests that a whole
“cage” of active particles is needed to engender significant
multibody attractions.
To quantify the difference between the prediction of the

passive two-body model and the active system, we employ
the so-called relative entropy, familiar from information
theory, DKLðPa

NkPp
NÞ ¼ R∞

0 Pa
NðrminÞ log (Pa

NðrminÞ=
Pp
NðrminÞ)drmin. [52]. DKL provides a scalar measure of

the additional effects (or “surprisal”) that the model Pp fails
to capture [53]. In Fig. 4(d) we plot DKLðNÞ=DKLðN ¼ 2Þ
for various Pe. At low activity, this ratio is independent of
N: the two-body passive model provides an accurate
representation of the active system. This remains true for
Pe below about 6, whereafter the ratio gradually increases.
The increase of DKL is negligible for small N: three-
or four-body terms do not contribute significantly to
the enhanced attractions. Additionally, the behavior for
Pe ¼ 10—which is just inside the range where enhanced
near-critical fluctuations are discernible—is not markedly
different from Pe ¼ 40. This implies an onset value of
Péclet number that distinguishes a low activity regime
(where multibody effects are negligible) and a high activity
regime [12,54].
In conclusion, the phase behavior of 3D active

Brownian particles exhibits striking similarities with that
of simple liquids having very short-ranged attractions but
it cannot be rationalized qualitatively in terms of effective
two-body interactions. While the pair potentials that we
derive in the low density limit are very short ranged, they
fail to yield phase separation. We trace this fact to the need
to include emergent multibody terms in the description of
the effective model. While in many coarse-grained treat-
ments of equilibrium systems the leading corrections to
the pair potential description are given by three and four
body interactions [46], for ABPs the principal multibody
effect that boosts particle attraction and drives MIPS
arises when particles become trapped in cages of co-
ordination ≈12 or more [18,55]. Accordingly a mapping
of active to equilibrium phase separation can only be
achieved at the expense of the simplicity of the equilib-
rium model.
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