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Topological superconductivity holds promise for fault-tolerant quantum computing. While planar
Josephson junctions are attractive candidates to realize this exotic state, direct phase measurements as the
fingerprint of the topological transition are missing. By embedding two gate-tunable Al=InAs Josephson
junctions in a loop geometry, we measure a π jump in the junction phase with an increasing in-plane
magnetic field Bk. This jump is accompanied by a minimum of the critical current, indicating a closing and
reopening of the superconducting gap, strongly anisotropic in Bk. Our theory confirms that these signatures
of a topological transition are compatible with the emergence of Majorana bound states.
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Majorana bound states (MBS), which are their own
antiparticles, are predicted to emerge as zero-energy modes
localized at the boundary between a topological super-
conductor and a topologically trivial region [1]. MBS can
nonlocally store quantum information, and their non-
Abelian exchange statistics allow for the implementation
of quantum gates through braiding operations [2]. This
makes them ideal candidates for robust qubits in fault-
tolerant topological quantum computing [3]. Rather than
seeking elusive spinless p-wave superconductors required
for MBS, a common approach is to use conventional
s-wave superconductors to proximity-modify semiconduc-
tor heterostructures with suitable symmetries [4].
Early MBS proposals were focused on one-dimensional

(1D) systems such as proximitized nanowires and atomic
chains [5–9], where the observation of a quantized zero-
bias conductance peak (ZBCP) [10] provided the support
for MBS. However, the inherent difficulties in the techno-
logical implementation of the required networks and the
intrinsic instabilities of their 1D elements have motivated
the search for versatile 2D platforms using more conven-
tional devices such as Josephson junctions (JJs) and spin
valves [11–18]. Recent experiments [13,14] suggest that
planar JJs are particularly promising because they support
topological superconductivity over a large parameter range.
The change between trivial and topological superconduc-
tivity, probed by ZBCP, is realized by applying an in-plane
magnetic field, Bk, and biasing the superconducting phase
between 0 and π. This is achieved by embedding the JJ in a
loop [13] or by using two strongly asymmetric JJs [14] in a
superconducting quantum interference device (SQUID).
Since ZBCP could arise even without topological super-

conductivity, it is crucial to identify alternative signatures.
A striking example is the closing and reopening of the

superconducting gap with an increasing Bk that is simulta-
neously accompanied by a phase jump [4–6,19–21]. Direct
phase measurements have proven to be a powerful probe to
elucidate unconventional superconductivity [22]. A trivial
Zeeman exchange 0-π transition can happen without
spin-orbit coupling (SOC) [23,24] but is then expected
to be independent of the Bk direction in contrast to the case
of topological superconductivity. It was also proposed
that a Zeeman-driven Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO)-like mechanism could lead to a minimum in the
critical current, Ic, through a spatial variation of the
superconducting order parameter [18]. This mechanism
can be characterized by the required to reach the first
minimum,

BFFLO ¼ π

2

ℏvF
gμBL

; ð1Þ

where ℏ is the Dirac constant, vF the Fermi velocity, g the
effective g factor, μB the Bohr magneton, and L the distance
between the superconducting contacts.
In Fig. 1(a), we plot BFFLO as a function of the distance

between the contacts for JJs on HgTe [18], InSb [17], and
Bi nanowires [25], and InAs for a range of vF noted in
the caption. This expression is in a good agreement with
the published measurements (see also Sec. III of the
Supplemental Material [26]). In this Letter, we consider
a device fabricated on an InAs quantum well with a g factor
of 10 and effective mass of m� ≈ 0.03 electron mass [11].
For L ¼ 100 nm, using jgj ¼ 10 and n ¼ 7 × 1011 cm−2,
vF ¼ ℏ

ffiffiffiffiffiffiffiffi

2πn
p

=m� ≈ 8 × 105 m=s, we find from Eq. (1) an
estimate for the trivial 0-π transition at BFFLO ≈ 14.4 T, still
much higher than any Bk used in our study.
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With Bk along the y direction, tight-binding simulations
presented in Figs. 1(b) and 1(c) predict a single junction,
without a phase bias, will undergo a topological phase
transition at By > 0. A hallmark of this transition is
the closing and reopening of the superconducting gap
[4,19–21] manifested as a minimum in Ic shown in
Figs. S8(a) and S8(d) of [26]. Above that closing, the
system is in a topological phase dominated by chiral p-type
superconductivity and host MBS localized at each end of
the JJ as shown in Fig. 1(c). This is in contrast to a phase-
biased junction [13,14], which, at π phase, can exhibit a
topological phase at an arbitrarily low By.
Unlike the prior works [13,14], in our JJs the phase is not

biased. Instead, it self-adjusts to minimize the free energy
of the system in both the trivial and topological phases. We
demonstrate how two gate-tunable and nearly symmetric

JJs forming a SQUID provide a platform to realize the first
direct phase-sensitive measurements of a topological tran-
sition. This is a complementary evidence for the topological
nature of our observation of a minimum in Ic.
The JJs based on epitaxial Al=InAs [11] are engineered to

support high-interfacial transparency and high mobility
resulting in JJ transparency τ ≈ 0.9, as estimated from the
current-phase relation [27], and robust proximity-induced
superconductivity in InAs. Both junctions (1, 2) of the
SQUID are W ¼ 4 μm wide and L ¼ 100 nm long, while
the area of the SQUID loop is 25 μm2. The superconducting
gap of the aluminium layerΔ0 ¼ 230� 10 μeV is estimated
from measured critical temperature. With the coherence
length ξ0 ¼ ℏvF=ðπΔ0Þ ≈ 770 nm and the mean free path,
le ≈ 200 nm [27], the JJs are in a quasiballistic short-
junction limit, le > L and ξ0 ≫ L [26,28]. At high density
(n ≈ 2 × 1012 cm−2), based on previous study [29], we
expect the Rashba SOC strength to reach α ≈ 150 meVÅ,
which corresponds to the spin-orbit energy ESO ¼ αm�vF=
ℏ ≈ 5.3 meV. We apply Bk along an arbitrary axis defined
by angle θ. At θ ¼ 0, the field is along y and perpendicular
to the current flowing through the JJ. We can also impose a
phase difference between the two JJs by applying a small
out-of-plane field. The versatility of our setup comes from
the possibility of operating it either as a SQUID or as a single
JJ by fully depleting the other JJ.
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FIG. 1. Signatures of trivial and topological superconductivity.
(a) Predicted field at which a Zeeman-driven FFLO-like
mechanism [18] leads to a minimum in Ic as a function of the
separation between the superconducting contacts. Solid line:
vF ¼ 5 × 105 m=s. Colored region: from 4 × 105 m=s to
1 × 106 m=s. Dashed line: our simulation for which the
FFLO-like mechanism would induce a transition at ≈4 T.
(b) The low-energy ground-state spectrum of a JJ with a semi-
conducting region at μ ¼ 5.05 meV. The energy gap closes and
reopens, indicating a topological phase transition and the emer-
gence of an MBS. Red lines: the evolution of finite-energy states
into MBS inside the topological gap ≲23 μeV. (c) Probability
density of MBS in the JJ for B ¼ 0.85 T, normalized to its
maximum value. It clearly indicates the formation of the MBS
localized at the end of the junction. White lines: the edges of the
normal region.
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FIG. 2. Gate control of trivial and topological superconductiv-
ity. Measurement of the differential resistance of JJ1 as function
of an applied in-plane field along the y axis at two different gate
voltages: (a) V1

g ¼ −1.5 V, (b) V1
g ¼ 1.4 V. In both cases, JJ2 is

depleted (V2
g ¼ −7 V) and does not participate in the transport.

At high gate (b), a minimum of the critical current is observed
around 600 mT for JJ1. (c) Zero-bias differential resistance of JJ2
as a function of the applied in-plane field and the gate voltage. V1

g
is set to −7 V.
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We next consider the By dependence of the JJ1 critical
current. In Fig. 2(a), at lower V1

g ¼ −1.5 V and thus at a
lower density, we observe a trivial monotonic decrease of Ic
with By. Remarkably, at higher V1

g ¼ 1.4 V in Fig. 2(b), we
see a striking difference with a nonmonotonic behavior of
Ic and a minimum around By ¼ 600 mT in agreement with
the tight-binding results from Fig. S8(d) [26]. Above that
minimum, we measure Ic ≈ 20 nA, consistent with the gap
reopening and topological transition. After the minimum,
the resistance vanishes for I < Ic. In contrast, after gap
closing, only nonzero resistance was measured in Ref. [18].
Minima in Ic have been observed in Ref. [14] due to

orbital effects, which can become energetically unfavorable
in the presence of a strong proximity effect [30]. We expect
that the proximity effect is stronger in our samples since the
top barrier of our 2D electron gas is more transparent due to
the lower band gap and electron mass of (In,Ga)As at 81%
In content compared to the 75% In content used in [14]. We
discuss this point in greater detail in [26].
Previous works [19,20] have focused on the low-density

and long-junction limit. In those works, the topological
transition was found to happen at the Zeeman energy
EZ ¼ gμBBk=2 ≈ ET=2, where the Thouless energy is
ET ¼ ðπ=2ÞℏvF=L [20]. While this relation is equivalent
to Eq. (1), the Thouless energy in the ballistic regime is not
uniquely defined [17,40]. These models do not apply to the
short and high-n junctions studied in this work for which
ET ∝

ffiffiffi

n
p

=L becomes larger (≈8.4 meV). The inadequacy
of those models has also been pointed out in Ref. [14],
which has motivated subsequent studies [30], as well as in
our own simulations [26], confirming that the topological
transition observed in our system is no longer determined
by EZ ¼ ET=2. However, we find that as L increases, the
transition field approaches the value predicted by Eq. (1)
[26]. This is consistent with the derivation of Eq. (1), where
the effective g factor was assumed to be finite only in
the normal region. In our system, we consider a finite g
factor over the whole junction. Therefore, the agreement
with EZ ¼ ET=2 is better when the normal region is long
and the effects of finite g factor in the proximitized InAs
layer become less relevant.
In our device, both JJs show a nontrivial evolution of the

superconducting gap and topological transition. Figure 2(c)
shows the zero-bias differential resistance of JJ2 as a
function V2

g and By. At the largest V2
g, the transition occurs

at ≈500 mT and moves toward higher By as V2
g is

decreased. Below V2
g ¼ −1.5 V, no evidence of any

transition remains. The lower By transition in JJ2 compared
to JJ1 can be attributed to small variation of junction
properties, for example, lower supercurrent and the corre-
sponding induced gap.
While the observed nonmonotonic dependence of Ic with

By is consistent with a transition to topological super-
conductivity, phase-sensitive measurements with a SQUID
could independently confirm this scenario. However, it is

generally difficult to avoid arbitrary field offsets between
measurements. Here, following the approach described in
Ref. [27], we use the gate tunability of our device to measure
the phase offset between the oscillations observed at a
different gate voltage. We avoid the issue of the field offset
by performing a single Bz sweep and measuring Ic at a
different gate voltage value for each value of the externally
applied field. This procedure is valid, since changing the
asymmetry between the Ic of the two JJs does not affect
the position of the maximum of the critical current in the
SQUID [27].
Using SQUID interferometry, we can identify a topo-

logical transition by setting JJ1 at V1
g ¼ −2 V as the

reference junction. At this V1
g, JJ1 does not show a

topological transition at any By. The resulting SQUID
oscillations in JJ2 reveal crucial differences between
By ¼ 100 mT and 850 mT, shown respectively in
Figs. 3(a) and 3(b), for various V2

g. From Fig. 2(c), we
expect that JJ2 would never reach the topological regime at
100 mT. Indeed, in Fig. 3(a), we only observe a small phase
shift, which we attribute to the interplay between the EZ
and SOC [23]. At a higher By in Fig. 3(b), there is a larger
phase shift between V2

g ¼ −3 V and −4 V than in Fig. 3(a),
consistent with the expected linear increase in By [23].
However, comparing V2

g ¼ −1 V and higher-gate values, a
phase shift of about π occurs.
Our tight-binding calculations, presented in Figs. S8(a)

and S8(d) [26], reveal that a phase jump is a signature
expected for the topological transition with the emergence
of MBS. As shown, the ground-state phase (minimizing the
energy in the absence of current) exhibits a phase jump
when the topological transition occurs. Because of the
broadening in the phase jump, the phase changes from 0 to
a value close to π, not at a precise value of the magnetic
field but over a finite range of By [see Figs. S8(a) and S8
(d)]. The phase jump broadening may cause a shift between
the magnetic field at which the system transits into the
topological state and the field at which the minimum of Ic
occurs. Consequently, the topological transition occurs at a
field smaller than or equal to the field corresponding to the
Ic minimum. The broadening of the phase jump observed
in the experiment appears to be smaller that the one in the
numerical simulations, suggesting the phase transition and
the measured Ic minimum occur at nearly the same By. In
Fig. 3(c), we present the phase shift between the reference
scan performed at V2

g ¼ −4 V and subsequent gate values.
At low By, below the topological transition, we observe that
the phase is linear in By, as indicated by the solid lines
corresponding to linear fits to the values below 450 mT.
The increase in slopewithV2

g can be attributed to the increase
of SOC [27]. For V2

g ¼ −3 V and −1 V, the linear trend
holds over all By. However, for V2

g ¼ 1 V, 2 V, and 3 V, a
jump can be observed around 550 mT, followed by another
linear portion. To separate these effects,we subtract the linear
component extracted from low-By fits. The corrected phase
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in Fig. 3(d) reveals a phase jump with a magnitude near π,
which is around the Ic minimum. This is a strong evidence
for the existence of a topological phase transition consistent
with theoretical calculations presented in [26]. The observed
phase jump rules out orbital effects that could lead to a
minimum in the Ic, as predicted in Ref. [20]. For a JJ with
symmetric contact geometry, in this case identical, such
effects would not lead to a phase jump, and only the Ic
minimum would be observed.
A distinct feature of the observed topological transition

is its interplay of SOC and Bk. In our system, the
topological regime is expected when Bk is along the y
direction, i.e., θ ¼ 0. Deviations from the y direction result
in a decrease of the topological gap for ϕ≲ π [31].
Therefore, for large enough θ, no topological transition
or associated minimum in Ic is expected. We test this by
probing the Ic minimum in a tilted Bk, away from By. In
Fig. 4, we show Ic enlargements of the JJ1 at V1

g ¼ 1.4 V.
As θ is increased, the Ic minimum increases but always
occurs at the same value of By. If only the magnitude of EZ
was relevant, one would expect to see the minima move to
lower values of By. Similarly, SQUID data at θ ¼ 10° [26],
display a reduced phase shift, which may indicate a reduced
topological gap. In contrast to smaller angles, at θ ¼ 20°, Ic

decreases monotonically, which suggests that s-wave order
prevails and no transition is observed. This observation
agrees with our calculations [26]. Unlike the insensitivity of
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trivial Zeeman 0-π transitions to the in-plane field rotation,
our strong dependence on the Bk direction is further
evidence for a topological 0-π transition. Furthermore,
while for 2D InAs quantum wells only an out-of-plane
anisotropy of the g factor was measured [41], we found that
even the presence of a small in-plane g-factor anisotropy
could not alone explain our results in Fig. 4.
By embedding Al=InAs Josephson junctions in a nearly

symmetric SQUID loop, we measured two distinct signa-
tures of a topological phase transition, a minimum in Ic and
the coincidental π jump of the superconducting phase, both
indicative of a closing and reopening of the superconduct-
ing gap. Our findings demonstrate the emergence of a
topological phase. In addition to By, the top gate voltage is
shown to be an efficient control knob for manipulating the
topological phase transition. This offers a scalable platform
for detection and manipulation of Majorana bound states
[42] and for development of complex circuits capable of
fault-tolerant topological quantum computing. The versa-
tility of this two-dimensional geometry and SQUID sensing
may also advance studies of MBS using magnetic textures
for topological superconductivity [43,44] and support
other exotic states that can be probed by phase-sensitive
signatures [45].
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