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It is well known that electrically neutral excitons can still be affected by crossed electric and magnetic
fields that make them move in a direction perpendicular to both fields. We show that a similar effect appears
in the absence of external electric fields, in the case of scattering of an exciton flow by charged impurities in
the presence of the external magnetic field. As a result, the exciton flow changes the direction of its
propagation that may be described in terms of the Hall conductivity for excitons. We develop a theory of
this effect, which we refer to as the anomalous exciton Hall effect, to distinguish it from the exciton Hall
effect that arises due to the valley selective exciton transport in transition metal dichalcogenides. According
to our estimations, the effect is relatively weak for optically active or bright excitons in conventional
GaAs quantum wells, but it becomes significant for optically inactive or dark excitons, because of the
difference of the lifetimes. This makes the proposed effect a convenient tool for spatial separation of dark
and bright excitons.
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Introduction.—Thomas and Hopfield [1] were the first to
point out that excitons propagating in the presence of an
external magnetic field orthogonal to their velocity acquire
stationary dipole polarization perpendicular to both the
magnetic field and their propagation direction. This is the
manifestation of the magnetic Stark effect for excitons that
was experimentally evidenced in a variety of semiconduc-
tor systems [2–4]. This effect is caused by the Lorentz force
that pulls an electron and a hole apart if an exciton as a
whole particle moves in the presence of a magnetic field.
Imamoglu and co-workers [5] pointed out that once an
exciton is placed in crossed electric and magnetic fields, it
starts moving as a whole in the direction perpendicular to
the directions of both fields, that leads to the renormaliza-
tion of the excitonic dispersion in quantum wells (QWs) or
two-dimensional semiconductor crystals. The dynamics of
electrically neutral quantum liquids in the presence of
crossed electric and magnetic fields was studied by
Shevchenko and Fil [6–8]. Onga et al. [9] have recently
reported the experimental observation of an exciton Hall
effect in atomically thin layers of MoS2 that manifests itself
in the appearance of an off-diagonal exciton conductivity in
the presence of a magnetic field. The effect is caused by the
strong spin-valley locking in monolayer transition metal
dichalcogenides (TMDs).
Here we predict an anomalous exciton Hall effect that is

independent of the exciton spin structure. We show that in

conventional GaAs quantum wells containing charged
impurities, an exciton flow may be reoriented in the real
space due to the combined effect of the local electrostatic
potential created by charged impurities and the orbital
effect of a magnetic field applied in normal to the plane
direction. Conceptually, this effect is similar to the cross-
field effect proposed by Imamoglu and co-workers [5] and
it manifests itself in a very similar phenomenology to the
exciton Hall effect studied by Onga et al. [9]; however, it is
different from both abovementioned effects as neither
external electric field nor spin-valley locking is required
in our case. To distinguish from the previous studies and
emphasize the similarity with the anomalous Hall effect
(AHE), we refer to the effect we study as an anomalous
exciton Hall effect.
We argue that the effect may have a significant magni-

tude in fluids of optically inactive, dark excitons due to
their long lifetimes, and it is much weaker for short-living
bright excitons in conventional GaAs-based quantumwells.
This makes the anomalous exciton Hall effect a powerful
tool for spatial separation of dark and bright excitons.
Synthetic gauge fields.—In condensed matter physics,

gauge fields are ubiquitous. The best-known example is a
magnetic field B, which can be introduced into a single
particle Hamiltonian by substitution p̂i → p̂i − qAi, with q
being the electric charge of the particle, Ai being compo-
nents of the vector potential,B ¼ ∇ ×A. The presence of a
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magnetic field dramatically modifies the properties of the
system, and leads to such fundamental phenomena as the
quantum Hall and Aharonov-Bohm effects. For neutral
particles with q ¼ 0, a magnetic field does not affect the
orbital degree of freedom directly, and thus cannot be
considered as a real gauge field. However, if a particle
possesses internal degrees of freedom, such as spin,
polarization, or internal set of energy levels, creation of
so-called synthetic gauge fields becomes feasible. In
particular, for cold atoms both Abelian and non-Abelian
gauge potentials can be engineered by resonant drive of the
system with spatially inhomogeneous laser beams [10]. For
photons, the methods to create synthetic gauge fields
include dynamic modulation [11], use of coupled optical
resonators [12], engineering lattices with strain [13], or
reciprocal metamaterials [14].
In condensed matter physics, the typical example of an

electrically neutral quasiparticle is an exciton. Excitons
govern the optical response of semiconductor materials at
low and, in many cases, at high temperatures [15]. The
recent study of the electric field effect on the gauge fields
for exciton strongly coupled to light (exciton polaritons) [5]
showed the high potentiality of the gauge field approach to
the description of exciton and polariton dynamics in the
presence of a magnetic field. In this Letter we demonstrate
how the combination of the magnetic Stark effect [1] with
excitonic scattering by an impurity potential leads to the
anomalous exciton Hall effect link to the appearance of an
effective U(1) gauge field acting on the motion of the
exciton center of mass.
Phenomenological model.—We start with a simplified

phenomenological model, assuming that the motion of the
exciton center of mass is decoupled from the relative
motion of the electron-hole pair. We consider a 2D exciton
confined in the xy plane and subject to the external
magnetic field directed along the z axis. If the exciton
center of mass is characterized by a nonzero momentum
k ≠ 0, the magnetic field acting on the electron and hole
would dipole polarize the exciton in the direction
perpendicular to k, so that the electric dipole moment of
the exciton reads hd̂i ¼ fðBÞ½ez × k�, where fðBÞ is a
function of the magnetic field, which depends linearly on B
at weak fields, but becomes inversely proportional to B at
the large fields in the magnetoexciton regime [16–18]. At
small magnetic fields one can find fðBÞ by passing to the
center-of-mass reference frame, where the magnetic field is
absent, but an electric field E0 ¼ ½ℏk ×B�=M appears;
here M is the exciton mass. If this electric field is weak,
then hd̂i ¼ −ehri ¼ αE0 ¼ α½ℏk ×B�=M, where α ¼
21a3B4πε0ε=128 is the 2D exciton polarizability [19]; thus,
fðBÞ ¼ −αℏB=M. At strong magnetic fields, in the mag-
netoexciton regime, the dipole moment is given by [18]
hd̂i ¼ −ehri ¼ −e½ez × k�l2B, where lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðeBÞp
is the

magnetic length; thus, fðBÞ ¼ −ℏ=B.

The presence of impurities and fluctuations of the doped
quantum well width leads to the appearance of the
scattering potential UscðRÞ for excitons; here R denotes
the position of the exciton center of mass. Moreover, it
generates some nonzero in-plane distribution of the electric
field EðRÞ, which can affect the exciton dipole moment
[see Fig. 1(a)]. Using these assumptions we write down the
model Hamiltonian of the system as

Ĥdip¼ p̂2

2M
þ V̂dip¼ p̂2

2M
þUscðRÞ−1

2
ðd̂ ·EþE · d̂Þ; ð1Þ

where d̂ ¼ fðBÞ½ez × k̂�, M is the exciton mass, and
p̂ ¼ ℏk̂ is the exciton center-of-mass momentum operator.
Note that as an exciton is a composite particle, there is no
simple straightforward relation between the scattering
potential and the electric field E ¼ EðRÞ, produced
by the scatterer. After some algebra this can be cast in
the form Ĥdip ¼ ½p̂ − eAeffðRÞ�2=ð2MÞ þUeffðRÞ, where
AeffðRÞ ¼ MfðBÞðℏeÞ−1½exEyðRÞ − eyExðRÞ� is a syn-
thetic vector potential, corresponding to the magnetic
field BeffðRÞ ¼ −ezMfðBÞðℏeÞ−1divEðRÞ. UeffðRÞ ¼
UscðRÞ −Mf2ðBÞð2ℏ2Þ−1E2ðRÞ is the effective scalar
potential. One can see that for the appearance of a nontrivial
synthetic gauge field, two conditions need to be fulfilled:
(a) B ≠ 0 and (b) the presence of an inhomogeneous
electric field.
We consider now the scattering of an exciton by a single

radially symmetrical impurity with UscðRÞ ¼ UscðRÞ and
EðRÞ ¼ EðRÞR=R. We obtain the following elastic scat-
tering matrix elements between the exciton states with the
center-of-mass momenta k and k0 (jkj ¼ jk0j):

FIG. 1. (a) The sketch of the system under consideration.
Excitons created by the optical pump travel in the plane of a
disordered quantum well in the presence of a uniform orthogonal
magnetic field B. The magnetic field induces an in-plane dipole
moment of excitons which leads to the asymmetric scattering of
excitons by impurities. This problem can be mapped to the
scattering of a charged particle by an impurity in the presence of
the position-dependent synthetic magnetic field BeffðRÞ, de-
picted by the gray domain around the scatterer in the figure.
(b) Polar plot of ½nðφ; BÞ − nðφ;−BÞ�=nðφ; BÞ, where nðφ; BÞ is
the concentration of excitons, propagating in the direction given
by the in-plane polar angle φ, plotted at B ¼ 1 T; see details in
Supplemental Material [20].
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Vdip
k;k0 ¼UscðΔkÞþ

iℏf½k0×k�z
4πjΔkj

Z
∞

0

dR2EJ1ðjΔkjRÞ: ð2Þ

Here we performed the integration over the polar angle,
which yielded the Bessel functions, Δk ¼ k0 − k is the
transferred momentum, the arguments of fðBÞ and EðRÞ
are omitted for brevity. The first term UscðΔkÞ≡
ð2πÞ−1 R∞

0 RdRUscðRÞJ0ðjΔkjRÞ is real and it describes
the normal symmetric scattering of an exciton by an
impurity, while the second imaginary term accounts for
the breaking of the time-reversal symmetry by the
magnetic field (as Vdip

k;k0 ≠ Vdip
−k0;−k). This term gives rise

to the asymmetric scattering (analogous to skew scattering)
of excitons by the impurities and thus leads to the excitonic
analog of the anomalous Hall effect. Thus, the physical
mechanism of the proposed effect is similar to the AHE
[21], where the role of spin-orbit coupling is replaced by
momentum dependent exciton dipole polarization.
Microscopic theory.—Now we proceed with a full

microscopic model of exciton-impurity scattering in the
presence of a magnetic field that accounts for the coupling
of electron-hole relative motion and the exciton center-of-
mass motion.
The Hamiltonian Ĥrel of the relative motion of an e − h

pair characterized by the center-of-mass momentum ℏk in
the presence of a perpendicular magnetic field B ¼
ð0; 0; BÞ has the form [16,22,23]

Ĥrel ¼ −
ℏ2

2μ
∇2

r −
iℏe
2

�
1

me
−

1

mh

�
B · ½r×∇r�

þ e2B2

8μ
r2 þ eℏ

M
B · ½r×k�− e2

4πε0εjrj
þ ℏ2k2

2M
; ð3Þ

where r ¼ re − rh is the relative e − h coordinate, and
μ−1 ¼ m−1

e þm−1
h . Deriving this expression we have

taken advantage of the existence of an exact integral of
motion, namely the magnetic center-of-mass momentum
[22], defined by the operator ℏk̂ ¼ −iℏ∇R − eAðrÞ,
where R ¼ ðmere þmhrhÞ=M is the center-of-mass
coordinate, M ¼ me þmh, and the vector potential is
taken in the symmetrical gauge AðrÞ ¼ B × r=2. The
exciton wave function has the form ΨkðR; rÞ ¼
exp fiðR=ℏÞ½ℏkþ eAðrÞ�gΦkðrÞ, where ΦkðrÞ is the
corresponding eigenstate of the Hamiltonian above. An
important point is that the wave function Φk of the relative
motion depends on the center-of-mass momentum ℏk [22];
i.e., the relative motion and the center-of-mass motion are
coupled. The scattering matrix elements Vk;k0¼hΨkjV̂jΨk0 i
between the exciton states with the center-of-mass momenta
k and k0 in the external potential V̂ ¼ VeðreÞ þ VhðrhÞ are
given below.
Weak magnetic fields.—In the weak-field limit, lB ≫ aB,

the scattering matrix elements can be found analytically;

here aB ¼ 4πε0εℏ2=ðμe2Þ is the Bohr radius (the 1s exciton
radius is aB=2). We shall neglect excitonic transitions to the
excited states of internal e − h motion, i.e., the center-of-
mass momentum jkj ≪ a−1B . The ground-state wave func-
tion ΦkðrÞ is calculated in a magnetic field using the
perturbation theory. The corresponding scattering matrix
elements Vk;k0 are obtained in Ref. [24] and read as
follows:

Vk;k0 ¼ ṼeðΔkÞF eðΔkÞþ ṼhðΔkÞF hðΔkÞ

þ i½k0×k�za2B
�
aB
lB

�
2

½ṼeðΔkÞαe− ṼhðΔkÞαh�: ð4Þ

Here ṼjðkÞ is the two-dimensional Fourier transform
of the potentials VjðrÞðj ¼ e; hÞ, F eðhÞðΔkÞ ¼
½1 − 3a2Bm

2
hðeÞðΔkÞ2=ð32M2Þ þ βeðhÞðΔkÞ2a2BðaB=lBÞ4�,

and Δk ¼ k0 − k is the transferred momentum. In the
derivation above only the terms of up to the second order in
B and the lowest order in jkjaB are taken into account.
The expressions for the dimensionless constants αeðhÞ and
βeðhÞ for a 2D Wannier-Mott exciton can be found in
Ref. [24] (we corrected typographical errors in the
original formulas): βeðhÞ¼4−6M−2ð105m2

hðeÞ−159μ
2=2Þ

and αeðhÞ¼−2mhðeÞκ=M, κ ¼ −21μ=ð162MÞ. Note that
βe, βh > 0 are positive; therefore, the exciton scattering
cross section increases with Bwhen lB ≫ aB. An important
point is that the time-reversal symmetry is broken
Vk;k1

≠ V−k1;−k, and the structure of Vk;k0 resembles its
counterpart Eq. (2) from the simplified phenomenological
model. The ground-state exciton energy spectrum is
given by

ϵðkÞ ¼ ℏ2k2

2M

�
1 − 2jκj

�
aB
lB

�
4
�
− ϵ0

�
1 −

�
l2
lB

�
4
�
; ð5Þ

where the parameter l2 ¼ ð3=128Þ1=4aB determines the
diamagnetic shift. The first term stands for the center-of-
mass kinetic energy, whereas the second term represents the
binding energy.
Magnetoexciton regime.—In the opposite regime, where

the magnetic field is strong (i.e., aB ≫ lB), one can neglect
the Coulomb interaction term in the Hamiltonian (3) and
the exciton dynamics is governed by the magnetic field
solely. In this regime, which is often referred to as the
magnetoexciton regime, one can calculate the dispersion of
the ground state of the system, treating the e − h Coulomb
potential as a perturbation [25,26],

ϵðkÞ ¼ 1

2
ℏωC −

ffiffiffi
π

2

r
e2

4πε0εlB
e−k

2l2B=4I0

�
k2l2B
4

�
; ð6Þ

where I0 is the modified Bessel function. The correspond-
ing impurity scattering matrix elements are given by
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Vk;k0 ¼ ṼeðΔkÞ exp
�
−
i
2
½k0 × k�zl2B −

Δk2l2B
4

�

þ ṼhðΔkÞ exp
�
þ i
2
½k0 × k�zl2B −

Δk2l2B
4

�
; ð7Þ

here ωC ¼ eB=μ is the cyclotron frequency.
Scattering rates.—The scattering T matrix can be

defined as Tk;k0 ¼hΨkjV̂jΨ̃k0 i, where V̂¼VeðreÞþVhðrhÞ
is the impurity potential operator, jΨki is the eigenstate of
the free Hamiltonian Ĥ0, describing a 2D exciton in a
magnetic field, and jΨ̃k0 i is the eigenstate of the full
Hamiltonian Ĥ ¼ Ĥ0 þ V̂. The T matrix satisfies the
Lippmann-Schwinger equation,

Tk;k0 ¼ Vk;k0 þ
Z

d2g
ð2πÞ2

Vk;gTg;k0

E − ϵðgÞ þ i0
; ð8Þ

where ϵðgÞ is the dispersion of the bare Hamiltonian Ĥ0

and it is given by Eqs. (5) and (6) for the two regimes under
consideration, respectively, and E is the energy eigenvalue
corresponding to jΨ̃k0 i. Two contributions can be
distinguished in the square modulus of the T matrix:
ν20jTk;k0 j2 ¼ Gk;k0 þ J k;k0 ; here Gk;k0 ≡ GðθÞ ¼ Gð−θÞ,
J k;k0 ≡ J ðθÞ ¼ −J ð−θÞ are dimensionless symmetric
and asymmetric contributions to the scattering rate, respec-
tively, θ ¼ φ − φ0 is the scattering angle, φ;φ0 are the polar
angles of k;k0, and ν0 ¼ M=ð2πℏ2Þ is the 2D density
of states of free particles with parabolic dispersion. The
density of states is defined as νðkÞ ¼ j∂ϵðkÞ=∂kj−1k=ð2πÞ.
Here we restrict ourselves to the case of elastic scattering
jkj ¼ jk0j. It is the asymmetric part J k;k0 of exciton
scattering by impurities that gives rise to the Hall
current. The properties of J k;k0 are discussed in detail
in Refs. [27–29].
The elastic scattering rate Wk;k0 from k0 to k state is

expressed with use of the Fermi golden rule Wk;k0 ¼
2πℏ−1nimpjTk;k0 j2δðϵk − ϵk0 Þ, where nimp is the surface
density of impurities. The presence of the magnetic field
breaks the time inversion symmetry in the problem and
leads to the disbalance of scattering rates Wk;k0 and Wk0;k,
which is why a nonzero Hall contribution J k;k0 emerges.
Let us assume that the impurity potential is described

by the Coulomb potential [30] VeðrÞ ¼ −VhðrÞ ¼
−eqimp=ð4πε0εrÞ. The Lippmann-Schwinger equation can-
not be treated perturbatively for such a potential in our
system, which is why we solve this integral equation (8)
numerically.
The developed formalism allows us to predict the

anisotropy of an angular distribution of the exciton emission
that would appear if a flow of excitons propagates in a plane
of a doped quantum well in the presence of a magnetic
field normal to the plane of the well [as Fig. 1(a) shows
schematically]. The angular distribution of the exciton

emissionmaybe found asnðϕÞ ¼ R∞
0 nk½kdk=ð2πÞ2�, where

nk is the occupation numbers of exciton states having
wave vectors k. The normalized variation of this quantity
due to the inversion of the orientation of the applied field is
shown in Fig. 1(b). For a detailed description of the relevant
formalism we refer the reader to the Supplemental Material
[20]. The observation of a predicted variation of the angular
distribution of the excitonic emission can be considered as a
smoking gun for the anomalous exciton Hall effect. We note
that dark excitons contribute very little to the intensity of
photoluminescence, while they strongly contribute to its
blueshift [31,32]. Experimental measurement of the angular
resolved blueshift of the bright exciton photoluminescence
peak might certify the presence of a flow of dark excitons.
Next, to obtain the Hall angle, we study the classical

transport regime jkjl ≫ 1, where l is the exciton mean free
path. We use the semiclassical Boltzmann equation,

dnk
dt

¼ Pk − Γnk þ
Z

d2k0

ð2πÞ2 ðWk;k0nk0 −Wk0;knkÞ; ð9Þ

where Pk is the coherent pump term, Γ ¼ 1=τ0 is
the particle decay rate. In the stationary regime,
performing the integration over the absolute value of k0,
the Boltzmann kinetic equation can be rewritten as
Pk ¼ Γnk −

R
dφ0ðwk;k0nk0 − wk0;knkÞ, where wk;k0 ¼

nimpν0=½ℏνðkÞ2�ðGk;k0 þ J k;k0 Þ and the exciton density
of states νðkÞ ¼ j∂ϵðkÞ=∂kj−1k=ð2πÞ. Let us assume the
in-plane wave vector k0 of the pump is pointing along the x
axis, i.e., k0¼ðk0;0ÞT , which implies Pk¼P0δðk−k0Þ¼
ðP0=kÞδðk−k0ÞδðφÞ and we note that this function is even
with respect to φ. Assuming that only the dipole type of
anisotropy of the momentum-space distribution function
is significant, we represent nk ¼ n0ðkÞ þ δnðkÞ, where
δnðkÞ ¼ nþðkÞ cosφþ n−ðkÞ sinφ, n0ðkÞ is the isotropic
part of the distribution functionwhichdependsonlyonenergy.
Substituting this decomposition into the kinetic equation and
integrating over φ0 in the collision term, we obtain

0 ¼ P0

k
δðk − k0ÞδðφÞ þ cosφ

�
ΩðkÞn−ðkÞ −

nþðkÞ
τðkÞ

�

− sinφ

�
ΩðkÞnþðkÞ þ

n−ðkÞ
τðkÞ

�
−
nk
τ0

; ð10Þ

where τðkÞ is given by the symmetric scattering
term τðkÞ−1 ¼ nimpν0=½ℏνðkÞ2�

R
2π
0 Gk;k0 ð1 − cos θÞdθ; here

θ ¼ φ − φ0 is the scattering angle. The factor ΩðkÞ is
governed by the asymmetric scattering term ΩðkÞ ¼
−nimpν0=½ℏνðkÞ2�

R
2π
0 J k;k0 sin θdθ, and it mixes the

even nþðkÞ and odd n−ðkÞ contributions to the density
distribution, yielding a Hall current in the transverse y
direction. Using the orthogonality of sinφ and cosφ,
the kinetic equation is readily solved, yielding n−ðkÞ ¼
−ΩðkÞτtotðkÞnþðkÞ. Here we introduced the total relaxation
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time τtotðkÞ ¼ ½τ−10 þ τðkÞ−1�−1. The Hall angle [33] is
defined as the ratio of the Hall current jy and the longitudinal
current jx is jy=jx ¼ −Ωðk0Þτtotðk0Þ, where jx;y ¼R
ℏkx;yδnðkÞd2k=ð2πÞ2. Note that Onga et al. [9] use a

different definition. We estimate the Hall angle for the typical
parameters of doped GaAs quantum wells nimp ≈ 1011 cm−2,
k0 ≈ 7 × 106 m−1 (see the caption of Fig. 2), ε ¼ 12.5,
qimp ¼ e, and τ0 ≈ 10 ps (for bright excitons). At a weak
magnetic field B ¼ 1 T the numerical solution of the
Lippmann-Schwinger equation with the kernel (4) yields
τðk0Þ ≈ 3.8 ps and jy=jx ¼ −Ωðk0Þτtotðk0Þ ≈ 0.8%. At an
increased concentration and a strongmagnetic fieldB ¼ 18 T
we solve the Lippmann-Schwinger integral equation numeri-
cally with the magnetoexciton kernel (7), which yields
jy=jx ¼ −Ωðk0Þτtotðk0Þ ≈ 1.8%. One may expect, by look-
ing at Fig. 2(a), that at intermediate magnetic field strengths
(aboutB ≈ 10 T) the Hall anglewould be significantly larger,

as the exciton dipole moment reaches its largest value in this
nonperturbative regime, while still not switching to the
magnetoexciton regime. We also note that the range of
magnetic fields corresponding to the largest dipole moment
is easily achievable experimentally, which makes the obser-
vation of the predicted phenomenon realistic. The dependence
of the Hall angle on the exciton lifetime is shown in Fig. 2(b).
Clearly, for dark excitonswhose lifetime is significantly larger
than the lifetime of bright excitons, the Hall angle is notably
larger. This shows that the anomalous exciton Hall effect may
be used as a tool for spatial separation of dark and bright
excitons.
Conclusions.—In conclusion, we demonstrated that the

magnetic Stark effect for 2D excitons may lead to the
emergence of an effective U(1) gauge field. This field can
result in the excitonic analog of the anomalous Hall effects.
For the latter we presented a detailed microscopic descrip-
tion of the scattering mechanism and analyzed the transport
properties, showing that the effect can be observed exper-
imentally in conventional GaAs quantum wells and that it is
much stronger for dark than bright excitons.
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