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Including prior knowledge is important for effective machine learning models in physics and is usually
achieved by explicitly adding loss terms or constraints on model architectures. Prior knowledge embedded
in the physics computation itself rarely draws attention. We show that solving the Kohn-Sham equations
when training neural networks for the exchange-correlation functional provides an implicit regularization
that greatly improves generalization. Two separations suffice for learning the entire one-dimensional H2

dissociation curve within chemical accuracy, including the strongly correlated region. Our models also
generalize to unseen types of molecules and overcome self-interaction error.
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Differentiable programming [1] is a general paradigm of
deep learning, where parameters in the computation flow
are trained by gradient-based optimization. Based on the
enormous development in automatic differentiation libra-
ries [2–5], hardware accelerators [6], and deep learning [7],
this emerging paradigm is relevant for scientific computing.
It supports extremely strong physics prior knowledge and
well-established numerical methods [8] and parametrizes
the approximation by a neural network, which can approxi-
mate any continuous function [9]. Recent highlights
include discretizing partial differential equations [10],
structural optimization [11], sampling equilibrium configu-
rations [12], differentiable molecular dynamics [13], differ-
entiable programming tensor networks [14], optimizing
basis sets in Hartree-Fock [15] method, and variational
quantum Monte Carlo [16–19] calculations.
Density functional theory (DFT), an approach to elec-

tronic structure problems, took an enormous step forward
with the creation of the Kohn-Sham (KS) equations [20],
which greatly improve accuracy from the original DFT
[21–23]. The results of solving the KS equations are
reported in tens of thousands of papers each year [24].
Given an approximation to the exchange-correlation (XC)
energy, the KS equations are solved self-consistently.
Results are limited by the quality of such approximations,
and a standard problem of KS-DFT is to calculate accurate

bond dissociation curves [25]. The difficulties are an
example of strong correlation physics as electrons localize
on separate nuclei [26].
Naturally, there has been considerable interest in using

machine learning (ML) methods to improve DFT approx-
imations. Initial work [27,28] focused on the KS kinetic
energy, as a sufficiently accurate approximation would
allow bypassing the solving of the KS equations [29,30].
For XC, recent works focus on learning the XC potential
(not functional) from inverse KS [31] and use it in the
KS-DFT scheme [32–35]. An important step forward was
made last year, when it was shown that a neural network
could find functionals using only three molecules by
training on both energies and densities [36], obtaining
accuracy comparable to human-designed functionals and
generalizing to yield accurate atomization energies of 148
small molecules [37]. But this pioneering work does not
yield chemical accuracy or approximations that work in the
dissociation limit. Moreover, it uses gradient-free optimi-
zation which usually suffers from poor convergence behav-
ior on the large number of parameters used in modern
neural networks [38–40].
Here, we show that all these limitations are overcome

by incorporating the KS equations themselves into the
neural network training by backpropagating through their
iterations—a KS regularizer (KSR) to the ML model. In a
traditional KS calculation, the XC is given, the equations
are cycled to self-consistency, and all previous iterations are
ignored in the final answer. In other ML work, functionals
are trained on either energies alone [41–44], or even
densities [33,34,45], but only after convergence. By incor-
porating the KS equations into the training, thereby
learning the relation between density and energy at every
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iteration, we find accurate models with very little data and
much greater generalizability.
Our results are illustrated in Fig. 1, which is for a

one-dimensional mimic of H2 designed for testing
electronic structure methods [46]. The distribution of
curves of the ML model directly predicting E from
geometries (direct ML) in Fig. 1(a) clearly fails to
capture the physics. Next, we demonstrate KSR with
neural XC functionals from the first two rungs of Jacob’s
ladder [47] by constraining the receptive field of the
convolutional neural network [48]. The local density
approximation (LDA) has a receptive field of just the
current point, while the generalized gradient approxima-
tion (GGA) includes the nearest-neighbor points, the
minimal information for computing the spatial gradient
of the density. In Figs. 1(b) and 1(c), the effect of the
KSR yields reasonably accurate results in the vicinity of
the data, but not beyond. The KSR LDA behaves
similarly to the uniform gas LDA [46]. When an XC
functional with a global receptive field is included in
Fig. 1(d), chemical accuracy is achieved for all separa-
tions including the dissociation limit. Similar results
can be achieved for H4, the one-electron self-interaction
error can easily be made to vanish, and the interaction
of a pair of H2 molecules can be found without any
training on this type of molecule (discussed below).
Modern DFT finds the ground-state electronic density by

solving the Kohn-Sham equations:

�
−
∇2

2
þ vs½n�ðrÞ

�
ϕiðrÞ ¼ ϵiϕiðrÞ: ð1Þ

The density is obtained from occupied orbitals nðrÞ ¼P
i jϕiðrÞj2. Here, vs½n�ðrÞ ¼ vðrÞ þ vH½n�ðrÞ þ vXC½n�ðrÞ

is the KS potential consisting of the external one-body
potential and the density-dependent Hartree (H) and XC
potentials. The XC potential vXC½n�ðrÞ ¼ δEXC=δnðrÞ is
the functional derivative of the XC energy functional
EXC½n� ¼

R
ϵXC½n�ðrÞnðrÞdr, where ϵXC½n�ðrÞ is the XC

energy per electron. The total electronic energy E is then
given by the sum of the noninteracting kinetic energy Ts½n�,
the external one-body potential energy V½n�, the Hartree
energy U½n�, and XC energy EXC½n�.
The KS equations are, in principle, exact given the exact

XC functional [20,54], which in practice is the only term
approximated in DFT. From a computational perspective,
the eigenvalue problem of Eq. (1) is solved repeatedly until
the density converges to a fixed point starting from an
initial guess. We use linear density mixing [55] to improve

convergence, nðinÞkþ1 ¼ nðinÞk þ αðnðoutÞk − nðinÞk Þ. Figure 2(a)
shows the unrolled computation flow. We approximate the
XC energy per electron using a neural network ϵXC;θ½n�,
where θ represents the trainable parameters. Together with
the self-consistent iterations in Fig. 2(b), the combined
computational graph resembles a recurrent neural network
[56] or deep equilibrium model [57] with additional fixed
computational components. Density mixing improves

(a) (b) (c) (d)

FIG. 1. One-dimensional H2 dissociation curves for several ML
models trained from two molecules (red diamonds) with optimal
models (highlighted in color) selected by the validation molecule
at R ¼ 3 (black triangles). The top panel shows energy (with
ENN, the nucleus-nucleus repulsion energy) with exact values
shown by the black dashed line. The bottom panel shows the
difference from the exact curves with chemical accuracy in gray
shadow. (a) directly predicts E from geometries and clearly fails
to capture the physics from very limited data. (b)–(d) show our
method (KSR) with different inputs to the model to align with the
first two rungs of Jacob’s ladder [47] (LDA and GGA) and then
global (a fully nonlocal functional). Uniform gas LDA [46] is
shown in brown. Gray lines denote 15 sampled functionals during
training, with darker lines denoting later samples. Atomic units
used throughout.

(a) (b)

(c)

FIG. 2. KS-DFT as a differentiable program. Black arrows are
the conventional computation flow. The gradients flow along red
dashed arrows to minimize the energy loss LE and density loss
Ln. (a) The high-level KS self-consistent calculations with linear
density mixing (purple diamonds). (b) A single KS iteration
produces vXC;θ½n� and EXC;θ½n� by invoking the XC energy
calculation twice, once directly and once calculating a derivative
using automatic differentiation. (c) The XC energy calculation
using the global XC functional.
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convergence of KS self-consistent calculations and paral-
lels the now common residual connections in deep neural
networks [58] for efficient backpropagation.
If the neural XC functional were exact, KS self-con-

sistent calculations would output the exact density, and the
intermediate energies over iterations would converge to the
exact energy. This intention can be translated into a loss
function, and the neural XC functional can be updated end
to end by backpropagating through the KS self-consistent
calculations. Throughout, experiments are performed in
one dimension where accurate quantum solutions could be
relatively easily generated via the density matrix renorm-
alization group (DMRG) [59]. The electron-electron repul-
sion is A expð−κjx − x0jÞ, and attraction to a nucleus at
x ¼ 0 is −A expð−κjxjÞ [48]. We design the loss function as
an expectation E over training molecules,

LðθÞ ¼ Etrain

�Z
dxðnKS − nDMRGÞ2=Ne

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

density lossLn

þEtrain

�XK
k¼1

wkðEk − EDMRGÞ2=Ne

�
;

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
energy lossLE

ð2Þ

where Ne is the number of electrons and wk are non-
negative weights. Ln minimizes the difference between the
final density with the exact density. The gradient from Ln
backpropagates through vXC;θ½n� in all KS iterations.
However, if LE only optimizes the final energy, no gradient
flows through EXC;θ½n� except for the final iteration.
To make backpropagation more efficient for EXC;θ½n�, LE

optimizes the trajectory of energies over all iterations,
which directly flows gradients to early iterations [60]. This
makes the neural XC functional output accurate ϵXC at
each iteration and also drives the iterations to quickly
converge to the exact energy. The optimal model is selected
with minimal mean absolute energy per electron on the
validation set.
Hundreds of useful XC functional approximations have

been proposed [61]. Researchers typically design the
symbolic form from physics intuition, with some (or no)
fitting parameters. Here we build a neural XC functional
with several differentiable components with physics intu-
ition tailored for XC in Fig. 2(c). A global convolution
layer captures the long-range interaction, GðnðxÞ;ξpÞ¼
ð1=2ξpÞ

R
dx0nðx0Þexpð−jx−x0j=ξpÞ. Note two special cases

retrieve known physics quantities, Hartree energy density
GðnðxÞ; κ−1Þ ∝ ϵH, and electronic density GðnðxÞ; 0Þ ¼
nðxÞ. Global convolution contains multiple channels, and
ξp of each channel is trainable to capture interaction in
different scales. Although the rectified linear unit [62] is
popular, we use the sigmoid linear unit (SiLU) [63,64]
fðxÞ¼x=½1þexpð−xÞ� because the infinite differentiability

of SiLU guarantees the smoothness of vXC, the first
derivative, and the second and higher order derivatives
of the neural network used in the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) training
[49]. We do not enforce a specific choice of ϵXC (sometimes
called a gauge [65]), but we do enforce some conditions,
primarily to aid convergence of the algorithm. We require
ϵXC to vanish whenever the density does and that it be
negative if at all possible. We achieved the former using
the linearity of SiLU near the origin and turning off the
bias terms in convolution layers. We softly impose the latter
by a negative transform layer at the end, where a negative
SiLU makes most output values negative. Finally, we
design a self-interaction gate (SIG) that mixes in a

portion of −ϵH to cancel the self-interaction error, ϵðoutÞXC ¼
ϵðinÞXC ð1 − βÞ − ϵHβ. The portion is a gate function βðNeÞ ¼
exp½−ðNe − 1Þ2=σ2�. When Ne ¼ 1, then ϵðoutÞXC ¼ −ϵH. For
more electrons, σ can be fixed or adjusted by the training
algorithm to decide the sensitivity to Ne. For H2 as R → ∞,
ϵXC tends to a superposition of the negative of the Hartree
energy density at each nucleus and approaches half that
for Hþ

2 .
Now we dive deeper into the outstanding generalization

we observed in a simple but not easy task: predicting the
entire H2 dissociation curve, as shown in Fig. 1. It is not
surprising that the direct ML model completely fails.
Neural networks are usually underdetermined systems as
there are more parameters than training examples. Regu-
larization is crucial to improve generalization [66,67],
especially when data are limited. Most existing works
regularize models with particular physics prior knowledge
by imposing constraints via feature engineering and
preprocessing [68,69], architecture design [70–73], or
physics-informed loss terms [74–76]. Another strategy is
to generate extra data for training using prior knowledge:
In image classification problems, data are augmented by
operations like flipping and cropping given the prior
knowledge that labels are invariant to those operations
[77]. KSR provides a natural data augmentation because
although the exact densities and energies of only two
separations are given, KSR samples different trajectories
from an initial density to the exact density at each training
step. More importantly, KSR focuses on learning an XC
functional that can lead the KS self-consistent calculations
to converge to the exact density from the initial density.
Figure 3 visualizes the density trajectories sampled by KSR
for one training separation R ¼ 3.84. The functional with
untrained parameters (t ¼ 0) samples densities near the
initial guess but soon learns to explore broadly and finds the
trajectories toward the vicinity of the exact density.
In contrast, most existing ML functionals learn to predict

the output of a single iteration from the exact density,
which is a poor surrogate for the full self-consistent
calculations [79]. These standard ML models have two
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major shortcomings. First, the exact density is unknown for
new systems, so the model is not expected to behave
correctly on unseen initial densities for KS calculations.
Second, even if a model is trained on many densities for
single iteration prediction, it is not guaranteed to converge
the self-consistent calculations to a good solution [80].
On the other hand, since KSR allows the model access to all
the KS iterations, it learns to optimize the entire self-
consistent procedure to avoid the error accumulation from
greedy optimization of single iterations. Further compari-
son for training without or with “weaker” KSR is in the
Supplemental Material [48].
Next, we retrain our neural XC functional with KSR on

Ntrain=2 examples each of H2 and H4 molecules. Figure 4
shows the prediction accuracy of KSR with both energy
and density loss (full KSR), in comparison to KSR with
only energy loss (energy-only KSR) and the direct ML
model. We compute the energy mean absolute error on the
holdout sets of H2 (R ∈ ½0.4; 6�) and H4 (R ∈ ½1.04; 6�).
The average mean absolute error of H2 and H4 with various
Ntrain is shown in Fig. 4(a). Full KSR has the lowest error at
minimum Ntrain ¼ 4, reaching chemical accuracy at 6. As
the size of the training set increases, energy-only KSR
reaches chemical accuracy at Ntrain ¼ 10, but the direct ML
model never does (even at 20). Then we test models on
unseen types of molecules. In Fig. 4(b), both KSR models
have perfect prediction on Hþ

2 (R ∈ ½0.64; 8.48�) because of
the SIG in the neural XC functionals, while direct ML
models always have large errors. Finally, we take a pair of
equilibrium H2 and separate them with R ¼ 0.16 to 9.76
bohr denoted as H2H2. KSR models generalize much better
than ML for “zero-shot” prediction [81], where H2H2 has
never been exposed to the model during training.

Why is the density important in training, and what use is
the nonconverged iterations? The density is the functional
derivative of the energy with respect to the potential, so it
gives the exact slope of the energy with respect to any
change in the potential, including stretching (or com-
pressing) the bond. Thus, the density implicitly contains
energetic information including the correct derivative at
that point in the binding curve. KS iterations produce
information about the functional in the vicinity of the
minimum. During training, the network learns to construct
a functional with both the correct minimum and all correct
derivatives at this minimum. In the paradigm of differ-
entiable programming, density is the hidden state carrying
the information through the recurrent structure in Fig. 2(a).
Correct supervision from Ln greatly helps generalization
from very limited data; see Ntrain ≤ 6 in Fig. 4. But as Ntrain
increases, both KSRs with and without Ln perform well in
energyprediction.We show the solution ofH4withR ¼ 4.32

(a) (b)

(c)

(d)

FIG. 3. (a) t-distributed stochastic neighbor embedding (t-SNE)
visualization [78] of density trajectories (gray dots) sampled by
KSR during training for R ¼ 3.84 from initial guess (cross) to
exact density (red diamond). Darker trajectories denote later
optimization steps t. Note t-SNE projection does not perfectly
preserve the distance between densities. The light red ellipse
illustrates the vicinity of the exact density within
log10½

R
dxðnKS − nDMRGÞ2=Ne� ≤ −4.25. Densities from each

KS iteration in trajectories are plotted in the corresponding
highlighted colors for (b) t ¼ 0 untrained, (c) t ¼ 220 optimal
in Fig. 1, and (d) t ¼ 560 overfitting to training with bad
generalization on validation.

(a)

(b)

(c)

FIG. 4. Test generalization of models as a function of the total
number of training examples Ntrain: full KSR (blue), energy only
KSR (pink), and direct ML (orange) on (a) holdout H2 and H4,
and unseen types of molecules (b) Hþ

2 , (c) H2H2. Black dashed
lines show chemical accuracy. See the Supplemental Material
[48] for training details.

(a) (b)

FIG. 5. Density and KS potential of H4 with R ¼ 4.32 from
neural XC functionals trained with (a) full KSR (blue) and
(b) energy only KSR (pink) on training set of size Ntrain ¼ 20.
Exact curves are in gray. vs are shifted by a constant for better
comparison.
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in Fig. 5. With Ln, the density is clearly much more
accurate than KSR without Ln [

R ðnKS − nDMRGÞ2dx ¼
9.2 × 10−5 versus 9.8 × 10−2]. Then we compute the cor-
responding exact vs using the inverse KS method [31]. Both
functionals do not reproduce the exact vs. However, the
functional trained with Ln recovered most of the KS
potential. Unlike previous works [33–35] that explicitly
included the KS or XC potential in the loss function, our
model never uses the exact KS potential. In our KSR setup,
the model aims to predict ϵXC, from which the derived vs
yields accurate density. Therefore, predicting vXC is a
side product. We also address some concerns on training
explicitly with vXC. One artifact is that generating the exact
vs requires an additional inverse calculation, which is
known to be numerically unstable [31]. Schmidt et al.
[33] observe outliers while generating training vXC from
inverse KS. While vXC is a fascinating and useful object
for theoretical study because its relation to the density is
extremely delicate, it is far more practical to simply use the
density to train on [36].
Differentiable programming blurs the boundary between

physics computation and ML. Our results for KS-DFT
serve as proof of principle for rethinking computational
physics in this new paradigm. Although there is no explicit
limitation of our algorithm to one dimension, we expect
practical challenges with real molecules, which will require
rewriting or extending a mature DFT code to support
automatic differentiation. For example, our differentiable
eigensolver for dense matrices [82] is not suitable for large
problems and will need to be replaced with methods for
partial eigendecomposition of sparse matrices [83,84].
Beyond density functionals in principle, all heuristics in
DFT calculations, e.g., initial guess, density update, pre-
conditioning, basis sets, even the entire self-consistent
calculations as a meta-optimization problem [60], could
be learned and optimized while maintaining rigorous
physics—getting the best of both worlds.
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