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As in between liquid and crystal phases lies a nematic liquid crystal, which breaks rotation with
preservation of translation symmetry, there is a nematic superfluid phase bridging a superfluid and a
supersolid. The nematic order also emerges in interacting electrons and has been found to largely intertwine
with multiorbital correlation in high-temperature superconductivity, where Ising nematicity arises from a
four-fold rotation symmetry C4 broken down to C2. Here, we report an observation of a three-state (Z3)
quantum nematic order, dubbed “Potts-nematicity”, in a system of cold atoms loaded in an excited band of
a hexagonal optical lattice described by an sp2-orbital hybridized model. This Potts-nematic quantum state
spontaneously breaks a three-fold rotation symmetry of the lattice, qualitatively distinct from the Ising
nematicity. Our field theory analysis shows that the Potts-nematic order is stabilized by intricate
renormalization effects enabled by strong interorbital mixing present in the hexagonal lattice. This
discovery paves a way to investigate quantum vestigial orders in multiorbital atomic superfluids.
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In electronic materials, the existence of nematic order [1]
has been established in high temperature superconductors
such as cuprates [2] and iron-based superconductors [3–6].
The quantum liquid crystal phase is of great importance to
the fundamental understanding of high temperature super-
conductivity. The investigation of intertwined vestigial
orders in multiorbital superconductivity that incorporates
nematicity has been attracting much attention [6] in recent
years. In these superconducting materials, an Ising-nematic
order is most predominantly observed, where the nematic
orientation has only two choices. In such systems, what
drives the nematic order has ambiguity, for it is difficult to
separate the electron correlation effects from material
structural transitions [4].
The system of ultracold neutral atoms confined in optical

lattices has a large degree of controllability. The backaction
from atoms to the confining laser potential is typically
negligible, making the structural transition avoidable. As an
effort to build an optical lattice emulator for multiorbital
physics [7,8], excited band condensation of cold atoms
has been achieved in one- [9,10] and two-dimensional
lattices [11–14]. A crucial difference of such condensates
from the ground-state condensate is that the physics is
generically described by a multicomponent order parameter
that respects crystalline symmetries [7,8], distinctive
from single-component [15] or multicomponent spinor
condensates [16]. At the level of effective field theory
description, this atomic system shares similarity as

multiorbital iron-based superconductors and enjoys more
controllability. Interaction driven orbital orders such as
chiral symmetry breaking [8,11,12,14], and dynamical
phase sliding [10] have been reported in multiorbital
settings of cold atoms. But many-body correlation effects
beyond mean field theory have not been observed so far in
such experimental systems.
Here, we report observation of a Potts-nematic quantum

state in a system of cold atoms loaded into the second band
of a hexagonal optical lattice. The emergence of this novel
phase is not captured by a simple mean field theory. First,
we prepare an atomic Bose-Einstein condensate (BEC) in
the ground band which respects all symmetries of the
lattice and, then, project the atomic sample onto the band
maximum of the second band using a lattice quench (see
Fig. 1). The phase coherence in the state will immediately
disappear and, then, reemerge within a few milliseconds.
During this process of phase-coherence reformation, the
quantum state spontaneously chooses one orientation,
giving rise to a three-state Potts nematicity, which is
qualitatively distinct from the commonly observed Ising-
nematic order in multiorbital superconductors. In the
dynamical evolution, the lifetime of the Potts-nematic state
is around 20 ms. The emergence and disappearance of the
Potts-nematic order in dynamics are found to coincide with
the atomic phase coherence in the excited band. Our theory
analysis shows that the Potts-nematic symmetry breaking is
captured by an orbital-sp2 (with s, px, and py hybridized)
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lattice model [see Fig. 1(b)] [27–29], yet with strong many-
body renormalization effects caused by single-particle
interorbital mixing between px and py. This effect is
absent in the square lattice [30] but unavoidable in the
hexagonal lattice, which makes the px-py orbital Josephson
coupling generically renormalize from the positive to the
negative side in our field theory analysis. This work opens
up a wide window for exploring rich correlated vestigial
orders in orbital-mixed atomic superfluids [27–29,31–34].
Our experiment is based on a 87Rb BEC with 105 atoms

in a quasi-2D hexagonal optical lattice, composed of two
classes of tube-shaped lattice sites, denoted asA and B (see
Fig. 1). Atoms are confined in 800 tubes, with each tube
containing 60 atoms on average. The temperature of atoms
before loading into the optical lattice is 75 nK, for which
about 70% of the atoms are condensed in our experiment.
The lattice potential is formed by three intersecting far-

red-detuned laser beams in the x-y plane with an enclosing
angle of 120°. Each beam is formed by combining two
linearly polarized lights with polarization directions ori-
ented in the x-y plane (denoted as in light) and along the z
axis (denoted as out light), respectively. The in and out light
form an inversion symmetric honeycomb lattice, and a
simple triangular lattice, respectively, whose lattice
strengths (V in and Vout) are separately tunable. The out-
to-in light intensity ratio is denoted as tan2 α ¼ Vout=V in.
The well depths at A and B sites are made different by
aligning two lattices in a way that A (B) sites of the
honeycomb lattice are enhanced (weakened) by the poten-
tial minima (maxima) of the triangular lattice or the other
way around, which is controllable by choosing relative
phases between the in and out light, denoted as θ1;2;3 [17].

The lattice has a similar geometry as in previous experi-
ments [35–37]. First, we adiabatically load the BEC into
the ground band optical lattice. The phase differences are
initially set to be θ1;2;3 ¼ ð2π=3; 4π=3; 0Þ, for which the B
sites are deeper than the A sites. The ground state BEC
forms at the Γ point, which respects all lattice symmetries.
In real space, atoms mainly reside in the s orbitals of B
sites. Then, we adopt the projection protocol developed for
loading atoms to excited bands of a square lattice [11]. We
switch the phase differences θ1;2;3 rapidly (within 0.1 ms) to
the reverse case with θ1;2;3 ¼ ð4π=3; 2π=3; 0Þ, making A
sites much lower than B. In this way, the atomic sample is
directly projected onto the excited band. By selecting
an appropriate combination of laser intensities having
V in þ Vout ¼ 30ER (ER the single-photon recoil energy),
and α ¼ 14°, a second-band population ratio of 50% is
achieved, as measured by band mapping techniques
(Fig. 1). In this Letter, we choose laser intensity such that
the s orbital of B sites are near resonance with px;y orbitals
of A sites in the final lattice, and consequently, the second,
third, and fourth bands are close-by in energy [17].
The quantum tunnelings at the final stage are, then,

described by an sp2-orbital-hybridized model

H0 ¼ tsp
X
r∈B

X
a¼1;2;3

½ŝ†rð ⃗p̂rþda · eaÞ þ H:c:�

− μs
X
r∈B

ŝ†r ŝr − μp
X
r0∈A

⃗p̂†
r0 · ⃗p̂r0 : ð1Þ

Here, ŝ and p̂ represent quantum mechanical annihilation
operators for s and p orbitals, and the shorthand
notation ⃗p̂ ¼ ðp̂x; p̂yÞ. The unit vectors e1 ¼ ð−1; 0Þ,

(a) (d)

(c) (e)(b)

FIG. 1. Experimental protocol of loading atoms into the excited sp2 band of the hexagonal optical lattice. (a) Illustrates the
arrangement of the laser beams forming the hexagonal lattice. There are three laser beams in the x-y plane with laser-wavelength
λ ¼ 1064 nm forming an optical hexagonal lattice [17]. The three angles θ1;2;3 represent the relative phases of the elliptical polarization
of the light. (b) The geometry of the hexagonal lattice, having two sets of sublattices labeled by A and B. The lattice is formed taking
fθ1; θ2; θ3g ¼ f4π=3; 2π=3; 0g or f2π=3; 4π=3; 0g. (c) The time sequence implemented in the experiment to load atoms from the lowest
to the second band. (d) The band-mapping TOF images with T ¼ 0; 0.4; 5; 35; 45 ms. When T ¼ 5 ms, three different band-mapping
TOF corresponding to three nematic orientations are shown in the red dashed box. (e) The measured time evolution of the atomic
population in the ground and first-excited bands normalized by their sum. Here, we average over five experimental runs for each data
point, with the error bar denoting the statistical error.
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e2 ¼ ð1=2;− ffiffiffi
3

p
=2Þ, and e3 ¼ ð1=2; ffiffiffi

3
p

=2Þ and corre-
sponding da ¼ ð2λ=3 ffiffiffi

3
p Þea mark the relative position

between the two sublattices (Fig. 1), with λ the laser
wavelength. The quantum tunneling between A and B
sublattices is tsp, which is about 2π × 540 Hz in our
experiment. The chemical potentials for s and p orbitals
are denoted as μs, and μp, respectively. The many-body
quantum effects are modeled by the s-orbital interaction,
Hint;s ¼ Us=2

P
r∈B ŝ

†
r ŝ

†
r ŝrŝr, and the p-orbital interaction

Hint;p ¼
X
r∈A

fJ½p̂†
x;rp̂

†
x;rp̂y;rp̂y;r þ H:c:�g

þ
X
r∈A

�
1

2

X
α;β∈fx;yg

Up;αβp̂
†
α;rp̂

†
β;rp̂β;rp̂α;r

�
: ð2Þ

In the language of group theory, the s orbital transforms
according to a one-dimensional representation of the lattice
symmetry group C3v (A1), and p orbitals correspond to
the two-dimensional representation (E). The p-orbital
couplings are constrained by Up;xx ¼ Up;yy ≡Upk,
Up;xy ¼ Up;yx ≡Up⊥, J ¼ ðUpk −Up⊥Þ=2, according to
symmetry analysis. In our experiment, the density inter-
actions Us, Upk, and Up⊥ are found to be comparable with
the tunneling tsp, and the Josephson coupling J is 1 order of
magnitude smaller [17]. By loading cold atoms into the
excited band in our hexagonal lattice, a quantum many-
body system with sp2-orbital hybridization is achieved,
which is a versatile platform for hosting rich physics
such as large-gap topological phases [38,39], exotic orbital
frustration [32,33], and novel carbon structure [40]
analogies.
Right after the lattice switch, we have cold atoms

symmetrically residing on the Γ point of the second band.
Then, we hold the system for 5 ms and take the measure-
ments of momentum distribution of the system through
TOF. We repeat the same experiment 600 times and, then,
perform statistics on the independently obtained TOF
images. The results are shown in Fig. 2. To diagnose the
Potts-nematic order, we divide the momentum space into
three regions marked as □, ○, and △, related to each other
by a C3 rotation [see Fig. 2(a)]. The total population in
these three different regions are denoted as n□, n○, and n△,
correspondingly. We define a complex valued Potts-nem-
atic contrast (PNC) as

PNC ¼ n□ þ ei2π=3n○ þ ei4π=3n△
n□ þ n○ þ n△

; ð3Þ

which vanishes only when the C3 symmetry is unbroken.
When the symmetry is completely broken, PNC takes
discrete values from ð1; ei2π=3; ei4π=3Þ. The occurrence
of PNC collected from consecutive experimental runs
[Fig. 2(b)] explicitly shows that the atomic quantum state
randomly acquires one of the three orientations. The

occurrence probability in the three orientations is approx-
imately equal, with the slight difference caused by experi-
mental imperfection. For example, a gradient magnetic
field is added along the gravitational direction to compen-
sate for the Earth’s gravity. One of three laser beams (the
one along the gravitational direction) forming the hexa-
gonal lattice is linearly polarized while the other two are
elliptically polarized. The laser beams then have different
degrees of fluctuations. The slight asymmetry observed in
the distribution of the Potts-nematic order is attributed to
the imperfect equivalence among the three directions. We
expect that switching to a lattice perpendicular to the
gravitational direction could improve the symmetry of
the distribution, which is not carried out here due to
technical limitations in our experiment.
Then, we divide the experimental TOF images into three

classes according to their PNC values and, then, take the
average within each class. The post-classification averaged
results are shown in Fig. 2(a). It is evident that atoms
spontaneously accumulate the M points and develop phase
coherence in the excited band. The kinetic energy decrease
in the lattice is expected to be absorbed by the continuous
degrees of freedom along the tube. From these results, the
Bragg-peaks of the momentum distribution form a recip-
rocal lattice of the hexagonal lattice, which means the
lattice translation symmetry remains unbroken. Thus, we

(a) (b)

FIG. 2. Spontaneous Potts-nematic symmetry breaking in the
hexagonal optical lattice. (a) The averaged momentum distribu-
tion. Atoms loaded in the excited band are found to sponta-
neously accumulate at one of the three M points. We introduce a
Potts-nematic contrast [PNC in Eq. (3)], where n□;○;△ corre-
spond to momentum distributions in three separate regions as
marked in the middle of (a), related to each other by a three-fold
lattice rotational symmetry. In the three panels, first, we classify
the experimental images into three classes according to the polar
angle of the nematic contrast argðPNCÞ ∈ ð−π=3; π=3Þ, ðπ=3; πÞ,
or ðπ; 4π=3Þ, and then take the average within each class. In the
panel insets parametrized by xðλÞ and yðλÞ, we show the real
space density extracted from the Bloch functions at theM points,
which shows a bond order that breaks the lattice rotation
symmetry in real space. (b) The statistical occurrence of
the nematic contrast. The nematic contrast extracted from the
experimental data shows the spontaneous breaking of the three-
fold lattice rotation symmetry, i.e., the emergence of the Potts-
nematic order in this quantum many-body system.
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conclude that the observed quantum state has a Potts-
nematic order. The coherent Bragg peaks suggest the
system has superfluidity [41].
Since the observed Potts nematicity occurs in the excited

band, it has finite lifetime and eventually decays in the
dynamical evolution. In Fig. 3, we show the rise and
disappearance of the Potts-nematic order in the quantum
dynamics. The observation implies three different stages of
dynamical evolution. At the first stage, right after atoms are
loaded to the excited band, the effective mass is negative at
the Γ point causing strong dynamical instability [15], which
immediately (within 1 ms) destroys the phase coherence in
the lattice directions. Around 1 ms, the momentum dis-
tribution of the atoms has no sharp features [see Fig. 3(a)].
At a second stage, the atomic phase coherence starts to
rebuild in the excited band around several milliseconds
after getting excited, and the Potts-nematic order emerges
simultaneously. The coherent Potts-nematic quantum state
remains stable up to about 20 ms. The intermediate-time
nematic order defines three distinctive regimes in quantum
dynamics separated by the occurrence and disappearance of
the spontaneous rotation symmetry breaking. Similar
transient dynamics has also been found in the bipartite
square lattice for a chiral Bose-Einstein condensate [11].

We expect the relatively long lifetime of the transient many-
body state compared to the band relaxation time to be
captured by a quantum Boltzmann equation [42].
To gain insight into the mechanism supporting the

Potts-nematic order in the sp2-orbital hybridized band,
we provide a mean field theory analysis assuming a plane-
wave condensate. Taking a trial condensate wave function
with hsri ¼ ϕseik·r, hpx;y;ri ¼ ϕx;yeik·r, with ϕs, ϕx;y the
variational parameters. For each lattice momentum k, we
minimize the energy by varying ϕs;x;y, and the resultant
energy is denoted as EðkÞ and shown in Fig. 4. With the
orbital Josephson coupling J > 0 [Eq. (2)], both the kinetic
and interaction energies favor a condensate at K points
which breaks the time-reversal symmetry but respects the
rotation symmetry. The corresponding condensate has a
px þ ipy character as in the square lattice [8,11]. With the
Josephson coupling J < 0, minimizing the kinetic and the
interaction energies meet frustration, as interaction then
favors p-orbital polarization. Once the Josephson coupling
is beyond a certain threshold J < Jc ∼ ð−tspÞ < 0, the
competition between kinetic and interaction energies leads
to a condensate at M points, breaking the lattice rotation
symmetry. Here, it is worth noting that, at the field
theory tree level [43], J is always positive for repulsive
atoms. Thus, the observation of the Potts-nematic order
in the experiment is beyond the simple mean field
theory and requires considering renormalization effects.
Integrating out higher momentum modes, the interaction
strengths among the low-energy modes renormalize as
ΔUs ∝ −½UsðΛÞ�2, Δ½Upk þ 2J� ∝ −½UpkðΛÞ þ 2JðΛÞ�2,

(a)

(b)

FIG. 3. Dynamical emergence of the Potts-nematic order.
(a) Time evolution of momentum distribution. In (a), we average
over the experimental results having a Potts-nematic contrast with
argðPNCÞ ∈ ð−π=3; π=3Þ. (b) Evolution of the PNC and the
coherent fraction [17]. The time point with which we quench the
lattice (see Fig. 1) is set to be 0 in this plot. The phase coherence
in the second band does not immediately form after the quench
but, instead, appears about several milliseconds later. The
emergence of the Potts-nematic order coincides with the second
band phase coherence. The rise and disappearance of the Potts-
nematic order define three qualitatively distinct regimes in the
quantum dynamics. Here, we average over ten experimental
images at each time point, with the error bar denoting the
statistical error.

(a) (c)

(b)

FIG. 4. Theoretical quantum phase transitions varying the
orbital Josephson coupling. The orbital Josephson coupling J
is introduced in Eq. (2). (a) The Gross-Pitaevskii energy EðkÞ
for a plane-wave condensate at a lattice momentum k. Here,
we choose tsp as an energy unit. The chemical potentials are
set at μs=tsp ¼ 0.1, μp ¼ 0, the interaction strengths are
Us=tsp ¼ Up;k=tsp ¼ 0.5, J=tsp ¼ 0.4, and −0.4 in (a) and
(b), respectively, and Up;⊥ is fixed respecting the lattice rotation
symmetry. The energy EðkÞ has minima at K (M) points for
J > Jc (J < Jc). The ground state condensates are chiral and
Potts nematic, correspondingly. (c) The sketch of the renormal-
ization of the p-orbital couplings to low energy. The multiple
curves correspond to different choice of bare couplings. The
feature of J renormalizing to the negative side is generic for the
hexagonal lattice. In (c), the couplings are in arbitrary units.
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ΔUp⊥ ∝ −½Up⊥ðΛÞ�2 [17]. We find that the coupling J
generically renormalizes to the negative side in our system
due to the single-particle orbital mixing unavoidable in the
hexagonal lattice (Fig. 4)—the mediated single-particle
mixing between px and py on nearbyA sites induced by an
s orbital is at the order ℏ × 100 Hz according to a
perturbative estimate, t2sp=ðμs − μpÞ. The essential differ-
ence between the renormalization of U⊥ and Uk is that it
is diagonal for U⊥ whereas it is nondiagonal for Uk. The
renormalization effects then stabilize the Potts-nematic
order. This is in sharp contrast to the chiral p-orbital
condensate in the square lattice [11,30], where the physics
is captured within a simple mean field theory in absence
of px-py orbital mixing. The many-body renormalization
effect caused phase transition has also been found for atoms
in a multimode cavity [44]. Here, we remark that, although
to fully determine whether the observed state is a con-
densate requires further interference measurements, our
theory captures the Potts-nematic symmetry breaking
regardless of the condensation, with thermal fluctuations
taken into account [45].
Conclusion and Outlook.—By loading bosonic atoms

into a hexagonal sp2 optical lattice, we find emergence of a
Potts-nematic quantum state in dynamics. The Potts-nem-
atic order spontaneously breaks a three-fold rotation
symmetry of the lattice. Our field theory analysis shows
that the Potts-nematic order is stabilized by intricate
renormalization effects caused by interorbital mixing.
We expect our experiment to stimulate investigation of
other scenarios for the Potts-nematic order as well, such as
thermal fluctuations, dissipative dynamics, and lattice
imperfections.
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