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Steady laminar flows through porous media spontaneously generate Lagrangian chaos at pore scale, with
qualitative implications for a range of transport, reactive, and biological processes. The characterization and
understanding of mixing dynamics in these opaque environments is an outstanding challenge. We address
this issue by developing a novel technique based upon high-resolution imaging of the scalar signature
produced by push-pull flows through porous media samples. Owing to the rapid decorrelation of particle
trajectories in chaotic flows, the scalar image measured outside the porous material is representative of
in situ mixing dynamics. We present a theoretical framework for estimation of the Lyapunov exponent
based on extension of Lagrangian stretching theories to correlated aggregation. This method provides a full
characterization of chaotic mixing dynamics in a large class of porous materials.
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Recent experimental [1–3], numerical [4], and theoreti-
cal [5] results have shown that the topological complexity
inherent to three-dimensional (3D) porous media generates
chaotic advection at the pore scale. This means that, in
steady laminar flows, fluid elements are elongated at an
exponential rate, qualitatively impacting [6] the transport,
mixing, and reactivity of solutes, colloids, and particles.
Although well documented in dynamical systems [7], the
consequences of chaotic mixing are yet to be uncovered in
porous substrates. In particular, chaotic advection enhances
chemical gradients at microscale over a large range of
Péclet numbers [2], a phenomenon that may explain the
limitations of conventional macrodispersion models to
predict reactive transport [8]. Dispersion models are based
on the description of the spatiotemporal spread of trans-
ported solutes [9], but do not capture the scalar hetero-
geneity inside the plume. These mixing processes evolve
with distinct dynamics which remain poorly understood in
porous media [10]. Experimental characterization of mix-
ing dynamics in porous media was achieved in two-
dimensional (2D) micromodels that facilitated the imaging
of scalar gradients below pore scale [8]. However, 2D pore
topologies prohibit the development of chaotic trajectories
in steady flows [5]. In turn, 3D imaging of solute transport
was achieved with x-ray and magnetic resonance tech-
niques [11,12], although the resolution is generally unable
to resolve the whole spectrum of microscale scalar gra-
dients [2,6]. While offering better resolution, refractive
index matching techniques [1–3] are limited to optically
transparent materials. Thus, quantification of chaotic mix-
ing dynamics across the diversity of natural and industrial
porous matter remains an outstanding challenge.
Here, we develop a novel methodology based on push-

pull experiments to provide quantitative measurements of

chaotic mixing in opaque porous media. Also termed echo
experiments [13], conventional push-pull experiments con-
sist of two phases. First, a pulse of solute dye is injected
into a porous sample via a steady Stokes flow (push phase).
Then, the flow is reversed (pull phase) and the withdrawn
solute mass is monitored at the injection point. This scalar
echo provides an indirect quantification of solute longi-
tudinal dispersion [13], but does not capture mixing
processes [10]. To characterize the entire mixing history,
we use high-resolution imaging of the withdrawn solute
spatial signature in the plane transverse to the mean flow
direction (Fig. 1 and [14]). Despite the reversibility of
Stokes flows, chaotic advection coupled to molecular
diffusion induces fast decorrelation of solute paths, a
general property of chaotic flows [15]. This decorrelation
renders the asymptotic scalar echo statistically equivalent to
that of two consecutive push-only flows and enables the
indirect quantification of in situmixing dynamics in porous
media. In the limit of low dye molecular diffusivity Dm, we
show that the average fluid stretching rate can be obtained
from the temporal decay of the spatial variance σ2cðtÞ of the
scalar echo. These results are supported by numerical
simulations [14] of scalar mixing in the sine flow, a
prototype of chaotic advection in fluids [16,17], and
confirms the universality of our findings.
Push-pull experiments are carried out in granular columns

containing random and ordered (body-centered cubic)
packings of monodispersed beads of diameter d ¼ 5 mm
or gravels of mean grain diameter d ¼ 5.4 mm. A steady
Stokes flow with mean longitudinal velocity ū of a viscous
glycerol-water mixture is created via a constant pressure
gradient between the column extremities [Fig. 2(b)].
The experiment starts by continuously injecting a fluores-
cent solute dye (molecular diffusivity Dm ≈ 10−11 m2 s−1
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in the glycerol-water mixture) through a small needle
(r ¼ 0.5 mm) at the top of the packing (push phase), until
a steady solute plume has formed inside the porous media.
We then stop the injection and smoothly reverse the flow by
inverting the pressure gradient (pull phase), while a camera
records the spatial distribution of dye concentration at the
injection plane, via a thin laser sheet sectioning the flow
transversally (see [14] for details on the setup). The
continuous injection of the dye (versus pulsed in classical
push-pull experiments) strongly reduces longitudinal scalar
gradients driving longitudinal dispersion and allows focus-
ing on transverse chaotic mixing dynamics.
As Stokes flows are linear and time reversible, fluid

elements experience zero net deformation over the com-
plete push-pull cycle. Thus, the distribution of dye mol-
ecules shown in Fig. 1 at time t0 after flow reversal have
traveled an average distance l ∼ ūt0 from the injection
point into the porous sample before being withdrawn to
the injection plane. In a simple translational flow, these
molecules would return to the injection within a small
diffusive radius rD ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
4Dmt0

p
of their initial position. The

circular scalar footprint of the plume formed at the injection
point (Fig. 1, t̃ ¼ 0) would thus be globally maintained
upon flow reversal. Conversely, in chaotic flows, fluid
deformation over the push-pull cycle significantly ampli-
fies the effective mixing of the withdrawn solute, as was
observed [18] for the push-pull flow over a stagnation
point. Sustained exponential stretching of fluid material
elements caused by chaotic advection renders dispersion
strongly heterogeneous and anisotropic, as evidenced by
the highly striated scalar distribution imaged experimen-
tally in the pull phase (Fig. 1), which are generated by

directions of exponential amplification (retardation) of
diffusion along the unstable (stable) manifolds of the
chaotic flow. Owing to flow stationarity, these manifolds
are time invariant and so the scalar echo converges toward a
steady spatial structure (see video in [14]). After a short
transient phase, the spatial variance σ2c of this structure
exhibits an exponential decay σ2c ∼ e−γ2 t̃ [Fig. 2(a)], where
t̃ ¼ t0ū=d is the dimensionless pull time and d the mean
grain diameter. At late times, the scalar variance tends to a
constant σ2c ≈ 10−3 corresponding to the background noise
level of the camera. This exponential decay is also con-
sistently observed in numerical simulations [14], where the
noise level is much lower. The decay exponent γ2 is
independent of the Péclet number (Pe ¼ ūd=Dm) over
the range 103 to 104, but strongly varies with the porous
medium properties, with significantly higher values for
gravels (γ2 ¼ 0.30) than for random bead packings
(γ2 ¼ 0.17) and ordered packings (γ2 ¼ 0.05).
To relate the exponent γ2 to the characteristics of chaotic

mixing, we adopt the Lagrangian stretching (LS) frame-
work [19–21]. This theory considers the balance of flow
stretching and molecular diffusion transverse to the elon-
gated lamellar scalar structures formed during fluid defor-
mation in push-only flows (see Fig. 2 in [14]). For a
constant stretching rate λ, an isolated lamella of length l
elongates as ρðtÞ ¼ lðtÞ=lð0Þ ¼ eλt while its width decay as
ρ−1 due to fluid incompressibility. Once the width reaches

(a)

(b.1) (b.2) (b.3) (b.4)

FIG. 2. (a) Spatial variance of scalar echo σ2c as a function of
time since reversal (expressed as pore advection time t0ū=d) for
various Péclet numbers and the three class of porous media
considered. The noise level of the camera produces a saturation of
scalar variance at a level hc2i ≈ 10−3. (b) Snapshots of scalar
concentration in the pull phase (in logarithmic scale) at 25t̃ ū =d
for (b.1) ordered bead pack, (b.2) random bead pack, (b.3) gravel
pack, and (b.4) sine flow (at t0 ¼ 10). Videos are available in [14].

FIG. 1. Heterogeneous and anisotropic scalar signature of the
push-pull echo during a push-pull experiment through random
bead packings. The initially spheroidal dye blob at t̃ ¼ t0ū=d ¼ 0
diffuses preferentially along directions of high fluid deformation
(indicated by arrows), leading to a highly striated dye distribu-
tions at later times. See video in [14].
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the Batchelor scale sB ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
Dm=λ

p
[14], stretching and

diffusion balance each other out and the lamella peak
concentration cmax asymptotically decays as ρ−1 [14].
The average squared concentration over an area A then
follows [14,17]

c2 ∝ A−1lsBc2max ∼ ρ−1; ð1Þ

where the overbar denotes two-dimensional spatial aver-
age. Owing to solute mass conservation, c̄ is constant and

the evolution of σ2c is driven by c2. As shown in [14], this
scaling accurately captures the scalar echo produced by a
single stagnation point [18]. This is because enhancement
of diffusion by fluid stretching only occurs during the push
phase. In the pull phase, scalar gradients are unaltered as
they remain perpendicular to the main compression direc-
tion. In contrast, folding of material lines in chaotic flows
induces ergodicity and a systematic decorrelation [14] of
solute particle trajectories and stretching directions
between the push and pull phases over a timescale of
order of λ−1 [15]. Thus, for t ≫ λ−1, the stretching histories
of fluid elements during the push and pull phases are
independent and the scalar echo observed at time t0 is
equivalent to the mixing produced by a push-only flow of
duration t ¼ 2t0, as verified from numerical simulations of
push-pull flows in the sine flow [14].
The evolution of the scalar variance of an isolated

lamella stretched at a constant rate [Eq. (1)] is generalizable
to randomly varying stretching rates, as typically experi-
enced by fluid elements at pore scale [5]. Because of the
multiplicative nature of stretching, the log elongation of
material elements log ρ is well approximated in ergodic
chaotic flows by a sum of independent and identically
distributed random variables, that converges toward the
normal distribution with mean λ̄t and variance σ2λt [17].
Ensemble averaging (denoted by angled brackets) of (1)
over this distribution reads

σ2c ∼ hc2i ∼
Z

∞

0

dΛ exp

�
−t

ðΛ − λ̄Þ2
2σ2λ

− Λt
�
; ð2Þ

with Λ ¼ log ρ=t. At large times, this integral can be
approximated with the Laplace method. The term dominat-
ing the integral is exp ½−tðΛ� − λ̄Þ2=ð2σ2λÞ − Λ�t�, where the
saddle point is Λ�≡maxðλ̄−σ2λ ;0Þ [19,22]. We verified this
approximation numerically. For smooth and space-filling
flows, λ̄≈σ2λ [17], henceΛ�¼0 and σ2c∼e−λ̄

2=ð2σ2λÞt≈e−ðλ̄=2Þt,
e.g., the decay exponent is determined by the fraction of
lamellae that have experienced no stretching and is inde-
pendent of the Péclet number.
The validity of the LS theory for isolated lamellae

extends well beyond coalescence time, for flows in the
Batchelor regime [22], e.g., when the scalar fluctuations
length scales lc are smaller than the velocity length scales

lv. Such regime naturally develops in porous media at
high Péclet number, for which sB ≪ lv [2]. This unex-
pected persistence was mathematically associated [22] to
the existence of a continuous limit in the spectrum of the
scalar covariance equation, when Pe → ∞. We found
that it can also be explained by the dominance of correlated
aggregation of lamellae in the Batchelor regime. In this
regime, coalescing lamellae form bundles that remain
smaller than the velocity fluctuation length scale (lc≤lv).
Thus, fluid stretching is approximately uniform within a
bundle. In turn, the number N of lamellae in the bundle is
dictated by local fluid compression and therefore propor-
tional to the local fluid elongation ρ in incompressible
flows. Thus, weakly stretched and compressed fluid ele-
ments are also weakly aggregated (N ∼ ρ [14]), a correlated
aggregation scenario verified numerically in the sine flow
[14]. As the fraction of weakly stretched lamellae (ρ ≈ 1)
asymptotically dominates the integral (2), and since this
fraction is also weakly aggregated (N ≈ 1), the domain of
validity of Eq. (2) extends beyond coalescence time.
Recalling that the stretching histories between the push

and the pull flows are independent at late time (t ≈ 2t0), the
asymptotic scalar echo variance then follows

σ2c ∼ e−γ2t
0
; with γ2 ≈ λ̃ ¼ λ̄d=ū: ð3Þ

λ̃ is the infinite-time Lyapunov exponent of the porous flow
made dimensionless by the pore advection time ta ¼ d=ū.
Equation (3) exhibits excellent agreement [Fig. 2(a)] with
the sine flow simulations for Pe ¼ 103 and 104, where the
Lyapunov exponent λ̄ ≈ 0.55 was computed independently
[14]. The measure of scalar dissipation in push-only flows
[2] through index-matched random bead packs at Pe ≈ 104

yields λ̃ ¼ 0.18 [14], in excellent agreement with the push-
pull estimate λ̃ ≈ 0.17 from this study. This value is also
close to the stretching and folding model proposed [2] for
granular porous media, that predicts λ̃ ≈ 0.21 in random
bead packs. Note that [3] found larger Lyapunov exponents
based on experimental velocity fields (λ̃ ≈ 0.5), but this
estimate integrates both longitudinal and transverse
stretching.
The weak dependence of γ2 on Péclet number, observed

both experimentally and numerically [Fig. 2(a)], confirms
that mixing occurs in the Batchelor regime where aggre-
gation is solely determined by the local stretching of fluid
elements. Indeed, the initial tracer injection radius r was
chosen such that lc ∼ r ≪ lv ∼ d and the Péclet was chosen
to be large enough for sB to be much smaller than lv. In
turn, the periodic boundary conditions of the sine flow
ensures lc ≤ lv ∼ 1. In contrast, once the mixed scalar
forms patches of uniform concentration over larger scales
lc ≫ lv, the aggregation of these patches becomes inde-
pendent of the local stretching statistics and occurs at
random [23] at a rate given by large scale dispersive

PHYSICAL REVIEW LETTERS 126, 034505 (2021)

034505-3



motions. In such a limit, the decay of σ2c has been found
[22] to be strongly dependent on Péclet number.
Differences in the Lyapunov exponent between gravel

and bead packings may be explained by the role of granular
contacts in controlling the stretching and folding of
material lines [2]. Given their irregular shapes, gravel
packs likely possess a larger number density of contacts
than random bead packs, favoring chaotic mixing.
Conversely, the small Lyapunov exponent associated with
flow through ordered packings may be attributed to the
existence of flow barriers imposed by the packing sym-
metries, which may retard chaotic advection [4]. In gravel
and random bead packs, the asymptotic exponential decay
of the scalar variance is associated with a transition to a
statistically stationary scalar probability density function
(PDF) with a corresponding exponential distribution
pðc̃Þ ¼ e−c̃, with the rescaled scalar concentration c̃≡
c=σc (Fig. 3). This asymptotic stationary scalar PDF is a
common feature of many chaotic flows, such as turbulent
flows and random velocity fields [6], and is associated with
the emergence of a dominant nontrivial strange eigenmode
[24] of the advection-diffusion operator. Self-similarity is
also suggested by linearity of the scalar moments hcni
decay exponents, i.e., γn ∝ n, as shown in the inset of
Fig. 3. Conversely, the experiments with ordered packings
do not exhibit such behavior, probably because the
slower mixing rate γ2 delays emergence of the dominant
eigenmode.
In conclusion, the spatiotemporal imaging of push-pull

flows allows the quantification of solute mixing in an
opaque porous matter, which is currently inaccessible by
other techniques. This opens new opportunities to uncover
these dynamics in the variety of porous materials that span
geologic, biological, and engineering applications, where

Stokes flows are expected to be chaotic [2]. We established
general properties of these flows, including the decorrela-
tion of solute trajectories, the control of scalar dissipation
by the correlated aggregation in the Batchelor regime, and
the self-similarity of the scalar PDF associated to the
dominance of a strange eigenmode. When performed at
high Péclet numbers, the method allows estimating the
Lyapunov exponent, which is the key parameter for chaotic
mixing models [21]. These findings are generic to chaotic
flows and are thus relevant to a broad range of fluid
applications.
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