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Passive scalars advected by three-dimensional Navier-Stokes turbulence exhibit a fundamental anomaly
in odd-order moments because of the characteristic ramp-cliff structures, violating small-scale isotropy. We
use data from direct numerical simulations with grid resolution of up to 81923 at high Péclet numbers to
understand this anomaly as the scalar diffusivity, D, diminishes, or as the Schmidt number, Sc ¼ ν=D,
increases; here ν is the kinematic viscosity of the fluid. The microscale Reynolds number varies from 140 to
650 and Sc varies from 1 to 512. A simple model for the ramp-cliff structures is developed and shown to
characterize the scalar derivative statistics very well. It accurately captures how the small-scale isotropy is
restored in the large-Sc limit, and additionally suggests a possible correction to the Batchelor length scale
as the relevant smallest scale in the scalar field.
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Introduction.—The transport and mixing of a passive
scalar by three-dimensional Navier-Stokes (NS) turbulence
is an important problem in numerous natural and engineering
processes [1–3], and also fundamentally important because it
is a candidate for applying the same ideas of universality as
stem from Kolmogorov’s seminal work on velocity fluctua-
tions [4–6]. An essential ingredient of this universality is that
the anisotropies introduced by the forcing at large scales are
ultimately lost at small scales, and increasingly smaller
scales become increasingly isotropic [5]. A few decades of
work has gone into showing that Kolmogorov’s description
is approximately valid for low-order statistics but breaks
down for high-order quantities due to intermittency [7–9].
This breakdown stands out particularly for the scalar field,
and manifests as a zeroth-order anomaly for odd-order
moments of the derivative field: small-scale isotropy for
the scalar requires odd-order derivative moments to vanish
identically, whereas data from experiments and simulations
show that the skewness (normalized third-order moment) in
the direction of an imposed large-scale mean gradient
remains to be of the order unity even at very high
Reynolds numbers [10–14], and that its sign correlates
perfectly with the imposed mean gradient [15].
This anomalous behavior, traced to the presence of

ramp-cliff structures in the scalar field [12,16,17], has
been studied so far mostly when the Schmidt number
Sc ¼ ν=D ¼ Oð1Þ, where ν is the kinematic viscosity and
D is the diffusivity of the scalar. Earlier studies
have indicated that the derivative skewness decreases as
Sc increases [18–20], but the data, obtained at very
low Reynolds numbers, were incidental to those papers.

The question we answer in this Letter, utilizing data from
state-of-the-art direct numerical simulations (DNS), is the
nature of this change as Sc increases; we also develop a
physical model that provides excellent characterization of
the data.
DNS data.—The data examined in this work were

generated using the canonical setup of isotropic turbulence
in a periodic domain [9,21], forced at large scales to

(a)

(b)

FIG. 1. (a) Typical one-dimensional trace of the scalar field in
the direction of the imposed mean-gradient (x), for Rλ ¼ 140 and
Sc ¼ 1, normalized by the rms value. L0 ¼ 2π is the domain
length. (b) A cartoon of the ramp-cliff model, based on the trace
(but not to scale).
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maintain statistical stationarity. The passive scalar is
obtained by simultaneously solving the advection-diffusion
equation in the presence of uniform mean gradient
∇Θ ¼ ðG; 0; 0Þ along one of the Cartesian directions, x
[18]. The database utilized here is the same as in our recent
work [22], and corresponds to microscale Reynolds
number Rλ ≡ u0λ=ν in the range 140–650, where u0 is
the root-mean-square (rms) velocity fluctuation and λ the
Taylor microscale; Sc lies in the range 1–512. The Péclet
number is the product RλSc. As noted in Ref. [22], the data
were generated using conventional Fourier pseudospectral
methods for Sc ¼ 1, and a new hybrid approach for higher
Sc [23,24]; in the latter method the velocity field was
solved pseudospectrally while resolving the Kolmogorov
length scale η, whereas the scalar field was solved using
compact finite differences on a finer grid, so as to resolve
the Batchelor scale ηB ¼ ηSc−1=2. Because of the steep
resolution requirements for ηB, earlier studies for high Sc
have been severely limited to low Rλ. Our database was
generated using the largest grid sizes (of up to 81923)
currently feasible in DNS, and allows us to attain signifi-
cantly higher Rλ than before.
The ramp-cliff model.—Figure 1(a) shows a typical trace

of the scalar field for Sc ¼ 1, in which the characteristic
ramp-cliff structures are clearly visible. Expectedly, the
larger scalar gradients organized as sharp fronts (cliffs) are
followed by regions of weaker gradients (ramps). A
plausible physical reason for the ramp-cliff structure [6]
is the presence of coherent parcels of fluid with large scalar
concentration values, moving at a finite velocity relative to
the ambient, thus creating sharp fronts; the resulting ramp-
cliff model for the scalar is shown in Fig. 1(b). Its overall
extent is on the order of the large scale L, whereas the cliff
occurs over some small scale δ ≪ L, with the correspond-
ing scalar increment Δθ, which is of the order of the largest
scalar fluctuation in the flow. Since the fluctuations of a
scalar advected in isotropic turbulence are Gaussian [25], it
is reasonable to assume that Δθ ∼ θrms, where θrms is the
root-mean-square (rms) value [26]. Thus, an odd moment
of the scalar gradient would get its largest contribution from
the cliff (with all other contributions essentially canceling
each other). Given the gradient at the cliff is θrms=δ and the
fraction occupied by the cliff is δ=L, one can write

hð∇kθÞpi ∼
�
θrms

δ

�
p
×
δ

L
; ð1Þ

where p > 1 is odd and∇kθ is the scalar derivative parallel to
the imposed mean gradient. Contributions of cliffs to even-
order statistics can be regarded as small. It was argued in [6]
that δ ∼ ηB, the Batchelor length scale, using which we can
derive the following expression for the standardized moments:

hð∇kθÞpi
hð∇kθÞ2ip=2

∼ Sc−1=2Rλ
ðp−3Þ=2; ð2Þ

where it is also assumed that the second derivative moment—
which gives the mean scalar dissipation rate, i.e.,
hχi ¼ 2Dhj∇θj2i—can be written in terms of large-scale
quantities, i.e., hχi ∼ θ2rmsu0=L, as anticipated from scalar
dissipation anomaly [27,28]. (However, we will show later
that this needs modification). The predictions of Eq. (2) are
compared in Fig. 2 with the DNS data. Figure 2(a) shows that
the normalized odd moments agree with expected variations
onRλ. Figure 2(b) shows that the Sc variations are close to the
prediction of the ramp model, but the best fit gives a slope of
−0.45 instead of −0.5.
It is worth asking why the odd-order moments of the

scalar derivative diminish with decreasing scalar diffusivity
(i.e., increasing Sc). The reason can be seen briefly in the
scalar traces for different values of Sc (Fig. 3). The signals
become more oscillatory as Sc increases, and the under-
lying ramp structure, though present, makes smaller

FIG. 2. Normalized odd-order moments of the scalar derivative
in the direction of the imposed mean gradient (a) as a function of
Rλ at Sc ¼ 1, and (b) as a function of Sc at Rλ ¼ 140. For clarity,
the data for p ¼ 5 and 7 are shifted down by factors of 100 and
16 000, respectively. The dotted lines in (a) correspond to power
law slopes of 0,1, and 2 [see Eq. (2)]. The dashed line in
(b) corresponds to a slope of −0.45 [instead of −0.5 given by
Eq. (2)]. Statistical errors are less than the symbol height but
those resulting from finite grid resolution introduce some
uncertainty in the seventh moment at Rλ ¼ 650.
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contributions to the overall derivative statistics. A related
study can be found in Ref. [22].
Refinement of the ramp-cliff model.—It is somewhat

surprising that Eq. (2) of this elementary model agrees
reasonably well with the data (Fig. 2), but it should be noted
that the odd-order moments in Fig. 2 are normalized by the
second moment. Recent studies have demonstrated that the
second moment has a mild Sc dependence [22,28], so some
cancellation of possible Sc dependence between the second
and odd-order moments aids the observed agreement. If,
instead, we normalize the odd-order moments by the
suitable power of the presumed gradient within the cliff,
viz., θrms=ηB, we get

hð∇kθÞpi
ðθrms=ηBÞp

∼ Sc−1=2Rλ
−3=2: ð3Þ

The model yields the same Sc−1=2 dependence as Eq. (2)
but simulations (Fig. 4) show increasing deviations from
the −1=2 scaling as p increases from 3 to 7.
Several possibilities to address these deviations can be

considered, but the simplest is to take δ in Fig. 1(b) as

ηD ¼ ηBScα ¼ ηSc−1=2þα; ð4Þ

instead of ηB as in Ref. [6]; here α is a small positive
number. Now using δ ¼ ηD and substituting it in Eq. (1) we
find

hð∇kθÞpi
ðθrms=ηBÞp

∼ ScβpRλ
−3=2;

with βp ¼ −1=2 − αðp − 1Þ; ð5Þ

which provides an order-dependent scaling exponent. We
now demonstrate the dynamical plausibility of this choice
of α and address several concomitant issues.

Justification for ηD and dynamical consequences.—An
argument in favor of ηD can be made in terms of the
intermittency of energy dissipation [29,30], which appears
via η in the definition ηB ¼ ηSc−1=2, ultimately influencing
the scalar field. It is thus reasonable to assume that δ in
Fig. 1(b) fluctuates around ηB with an average value given
by an Sc-dependent quantity such as ηD.
Given that ηD represents the dynamically smallest scale,

it is natural to try to understand its influence on the even
order moments. A known result from Refs. [27,31] is that
the normalized mean scalar dissipation rate decreases
logarithmically with Sc. This result has been verified at
high Rλ in Refs. [22,28], and can be written as

FIG. 3. One-dimensional traces of the scalar field in the
direction of the imposed mean gradient (x). Similar to Fig. 1
(a), but for Sc ¼ 8, 64, and 512 (from top to bottom).

FIG. 4. The 3rd, 5th, and 7th order moments of the scalar
derivative in the direction of the imposed mean gradient at
Rλ ¼ 140, suitably normalized by θrms=ηB. Dashed line corre-
sponds to the −1=2-power predicted by Eq. (3), whereas the
dotted lines correspond to power laws with −1=2 − αðp − 1Þ,
α ¼ 0.05 (see text). For clarity, the data for p ¼ 5 and 7 are
shifted down by factors of 4 and 16, respectively.

FIG. 5. The variance of scalar gradient (which is also given as
hχi=6D) normalized by θrms=ηB at Rλ ¼ 140. The data can be
well represented by a power law of the form Sc−0.1.
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hχiL
θ2rmsu0

∼ c
Rλ

logSc
; ð6Þ

where c is some constant, independent of Rλ. However, the
log Sc dependence is only semiempirical [27], and opera-
tionally indistinguishable from a weak power law depend-
ence (which is more tractable for practical purposes). Since
hχi is essentially the second moment of scalar derivatives,
the above relation can be rewritten as

hj∇θj2i
ðθrms=ηBÞ2

∼ cSc−γ; ð7Þ

where the 1= log Sc dependence has been replaced Sc−γ

(with γ > 0) and we have utilized classical scaling relations
L=η ∼ Rλ

3=2 and Rλ
2 ∼ Re ¼ u0L=ν [7]. We plot the left-

hand side of Eq. (7) versus Sc in Fig. 5, with the best fit
giving γ ¼ 0.1. It now follows from the definition of ηD that
α ¼ γ=2 ¼ 0.05, allowing us to capture the Schmidt
number scaling of the second moment. In fact, a similar
consideration was also exploited in a recent work [32],
where the authors also use the second moment of the scalar
derivative to define the Taylor length scale, which was then
utilized to collapse many scalar statistics.
The first outcome of this refinement is that it agrees very

well with the data on odd-order moments (see dotted lines
drawn in Fig. 4). In fact, combining the results from
Eqs. (5) and (7) gives an Sc−1=2þα relation for normalized
odd moments in Eq. (2), which corrects the discrepancy
noted in Fig. 2(b) (the best slope being −0.45 instead
of −0.5). As a second outcome, Fig. 6 shows that
the probability density functions (PDFs) of the scalar
derivative perpendicular to the direction of the imposed

mean-gradient show very good collapse for Sc > 1 (with
minor variation in extreme tails).
A further outcome of using ηD is that the positive sides of

the PDFs of the scalar derivative parallel to the mean-
gradient, corresponding essentially to the cliffs, collapse for
all Sc (see Fig. 7). As Sc increases, the left side of the PDF
moves outwards rendering it symmetric for large Sc. Local
isotropy dictates that the even moments of the scalar
gradients both parallel and perpendicular to the imposed
large mean gradients be equal, and, in fact, the high Sc
asymptote of the PDFs in Fig. 7 match the collapsed PDFs
of Fig. 6. Thus, in the limit of large Sc, odd-order derivative
moments in all directions are zero and even moments
equal—in conformity with small-scale isotropy. The high-
order even moments from both directions are explicitly
compared in Fig. 8. It is seen that they approach each other
and become independent of Sc for Sc≳ 8. Together these

FIG. 6. The PDFs of scalar derivative in the direction
perpendicular to the imposed mean gradient, normalized by
θrms=ηD. Rλ ¼ 140. The statistical error bars are negligible and
the probability density is shown here only when the number of
samples in the histogram was greater than 103. The exponential
tails of these distributions was explored in Ref. [33].

FIG. 7. PDFs of scalar derivative parallel to the imposed mean
gradient, normalized by θrms=ηD. Rλ ¼ 140.

FIG. 8. Moments of scalar derivative in parallel (red circles)
and perpendicular (blue triangles) directions of the imposed mean
gradient. With increasing Sc, the moments approach each other
and are also independent of Sc, affirming the collapses of the
PDFs seen in Figs. 6 and 7.
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results consolidate the idea that the dynamically relevant
smallest scale in the scalar field is ηD (instead of ηB).
Summary.—We have considered the important problem

of the nonvanishing odd moments of the scalar derivative in
the direction of the imposed mean gradient. This result
violates the isotropy of small scales. We have shown that
this feature can be accounted for by a simple mechanistic
model for the ramp-cliff structure. This model predicts the
normalized moments quite well. A closer look at the
moments reveals certain departures from the model.
These departures can be addressed by introducing a new
diffusive scale that is different from the Batchelor scale.
This new scale not only improves agreement with the data
on odd-order moments but also allows us to collapse, for
large Sc, all the PDFs of scalar gradients in all directions.
In that limit, even moments of the derivative are equal, to all
orders, in the direction of the mean gradient and
perpendicular to it. In conclusion, our results provide a
satisfactory characterization of all the gradients in scalar
turbulence. It would be instructive to see how our results
here, especially on the modification of Batchelor length
scale, translate to active scalars, such as temperature and
salinity in the ocean.
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