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Eigenvector continuation is a computational method that finds the extremal eigenvalues and eigenvectors
of a Hamiltonian matrix with one or more control parameters. It does this by projection onto a subspace of
eigenvectors corresponding to selected training values of the control parameters. The method has proven to
be very efficient and accurate for interpolating and extrapolating eigenvectors. However, almost nothing is
known about how the method converges, and its rapid convergence properties have remained mysterious.
In this Letter, we present the first study of the convergence of eigenvector continuation. In order to perform
the mathematical analysis, we introduce a new variant of eigenvector continuation that we call vector
continuation. We first prove that eigenvector continuation and vector continuation have identical
convergence properties and then analyze the convergence of vector continuation. Our analysis shows
that, in general, eigenvector continuation converges more rapidly than perturbation theory. The faster
convergence is achieved by eliminating a phenomenon that we call differential folding, the interference
between nonorthogonal vectors appearing at different orders in perturbation theory. From our analysis we
can predict how eigenvector continuation converges both inside and outside the radius of convergence of
perturbation theory. While eigenvector continuation is a nonperturbative method, we show that its rate of
convergence can be deduced from power series expansions of the eigenvectors. Our results also yield new

insights into the nature of divergences in perturbation theory.
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Eigenvector continuation (EC) is a variational method
that finds the extremal eigenvalues and eigenvectors of a
Hamiltonian matrix that depends on one or more control
parameters [1]. The method consists of projecting the
Hamiltonian onto a subspace of basis vectors correspond-
ing to eigenvectors at some chosen training values of the
control parameters. It has been used to extend quantum
Monte Carlo methods to problems with strong sign
oscillations [2], as a fast emulator for quantum many-body
systems [3,4], and as a resummation method for perturba-
tion theory [5]. Eigenvector continuation is well suited for
studying the connections between microscopic nuclear
forces and nuclear structure, a topic that has generated
much recent interest [6—14]. All of these applications
would be greatly enhanced with a better fundamental
understanding of the convergence of the method. For that
purpose, in this Letter we present the first study of the
convergence properties of eigenvector continuation.

Let us consider a one-parameter family of Hamiltonian
matrices H(c) = Hy + cH,, where both H, and H, are
finite-dimensional Hermitian matrices. The extension to the
multiparameter case will be discussed after our discussion
of the one-parameter case. For the given Hamiltonian family
H(c), we are interested in finding the ground-state eigen-
vector |v(c,)) and eigenvalue E(c,) for some target
parameter value ¢ = c,. The objective of eigenvector con-
tinuation is to approximate |v(c,)) as a linear combination of
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ground-state eigenvectors |v(cg)), ..., |v(cy)) at training
points ¢ = ¢y, ..., cy. In eigenvector continuation the best
linear combination of training-point vectors is chosen by
minimizing the expectation value of H(c,). As noted in
Ref. [1], eigenvector continuation can also be extended to
excited states by including excited-state eigenvectors at the
training points. However, we will focus on ground-state
calculations in this analysis.

It is convenient to introduce a variant of eigenvector
continuation which we call vector continuation (VC).
Like eigenvector continuation, in vector continuation we
approximate |v(c;)) as a linear combination of vectors
|v(cp)), .-, |v(cy)) at training points ¢ = ¢y, ..., cy. The
difference is that in vector continuation we construct the
best approximation by projecting |v(c,)) onto the subspace
spanned by the training-point vectors. This is a simpler
process than the variational calculation used in eigenvector
continuation. Since it requires knowledge of the target
eigenvector, vector continuation should be viewed as a
diagnostic tool rather than a method for determining
|v(c,)). We will show that eigenvector continuation and
vector continuation have identical convergence properties,
and so it suffices to understand the convergence properties
of vector continuation. As the name suggests, vector
continuation can also be generalized to any smooth vector
path |v(c)) without reference to Hamiltonian matrices or
eigenvectors.

© 2021 American Physical Society
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We want to understand the asymptotic convergence of
eigenvector and vector continuation at large orders. To do
this we consider a sequence of training points cy, ..., Cy
with a well-defined limit point cy;,, for large N that is some
distance away from the target point c,. Although we are
taking the limit of large N, the values of N we probe are
always vastly smaller than the number of dimensions of our
linear space. Our choice of training points provides a good
definition for the convergence properties at large orders.
It can be viewed as the worst possible conditions for
convergence, where all of our training points are clustered
in one area but we need to extrapolate to a target point
located somewhere else. In future work we plan to discuss
the extension to the case where the training points are
clustering around more than one accumulation point. When
the training points are spread apart and not clustered, the
convergence is generally much faster, especially if the
training points surround the target point from all sides.
However, the convergence for this more general case is
highly dependent on the positions of the training points,
and it is difficult to make a clean definition of asymptotic
convergence. Nevertheless, in the Supplemental Material
[15] we show that convergence for the multiparameter case
is much faster if there exists a smooth curve connecting
some subset of the training points to the target point.

Without loss of generality we can redefine ¢ so that our
limit point corresponds to ¢ = 0. In the limit where the
training points accumulate around ¢ = 0, we can replace
our training vectors |v(cg)), ..., |v(cy)) with the deriva-
tives of |v(c)) at ¢=0, which we write as
[0(9(0)), ..., |[v™W)(0)). These derivative vectors approxi-
mately span the same N + 1-dimensional subspace as our
original training vectors. In the following, we write
|v(c,))EC for the order-N eigenvector continuation approxi-
mation to |v(c,)), and we write |v(c,))¥C for the order-N
vector continuation approximation to |v(c,)). We use the
same set of training vectors [v(?)(0)),...,[o™)(0)) for
eigenvector continuation and vector continuation.

Starting from the derivative vectors [0(?)(0)),...,|v(¥)(0)),
we use Gram-Schmidt orthogonalization to define a sequence
of orthonormal vectors |w(®(0)), ..., |w")(0)). Here, we
make the assumption that the derivative vectors are linearly
independent, which is generally true for all of the practical
problems we encounter. With this orthonormal basis, we can
write |v(c,))\C as

N

=D wO)u(e )W (0). (1)

n=0

Using the same orthonormal basis, we can also write
[v(c))i” as
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FIG. 1. Logarithm of the error versus order N for eigenvector
continuation (asterisks), vector continuation (solid lines), and
perturbation theory (dashed lines). The three different colors
(black, blue, and red) correspond with models 1A, 1B, and 1C,
respectively.

where the coefficients a(c;, n, N) are found by minimizing
the expectation value of H(c,).

We now consider perturbation theory (PT) around the
point ¢ = 0. If z, is the nearest branch point to ¢ = 0, then
the series expansion

[s+)
ct

[o(e,)) =D [0 (0)

(3)
n=0 n!

will converge for |c,| < |z9| and diverge for |¢,| > |zl

We define |v(c,))RT as the partial series truncated at order

n=N,

(e =3 ()<L (4)

n!

In this analysis we have assumed that the radius of
convergence is greater than zero. This follows from the
fact that H(c) is a finite-dimensional Hermitian matrix for
all real c. In a forthcoming publication we will discuss the
extension to infinite-dimensional systems and the interest-
ing case where the radius of convergence is zero.

We will quantify the error of these three approximations
to |v(c,)) by computing the norm of the residual vector as a
function of N. From the norm of the residual vector versus
N, we can determine whether the approximations are
converging or not. In Fig. 1 we plot the logarithm of the
error versus order N at fixed c,. The results are shown for
eigenvector continuation (asterisks), vector continuation
(solid lines), and perturbation theory (dashed lines). The
three different colors correspond to three different exam-
ples, which we call models 1A, 1B, and 1C, each with a
linear space of 800 dimensions. For each example we see
that eigenvector and vector continuation converge more
rapidly than perturbation theory. Furthermore, eigenvector
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and vector continuation have nearly identical errors at each
order. The Hamiltonians for the three models are given in
the Supplemental Material [15]. There is nothing special
about these matrix models, and we find similar results to
these in all matrix examples where perturbation theory is
convergent.

Let us now prove that eigenvector continuation and vector
continuation indeed have identical convergence properties.
We first consider vector continuation at order N. Let V¥ (0)
be the subspace spanned by |w(®(0)), ..., [w")(0)), and let
VY (0) be the orthogonal complement. As one can see from
Eq. (1), there is no error at all in the coefficients of
w©(0)), ..., |w™(0)). The residual vector for |v(c,))¥C
lies entirely in V/(0).

We now consider eigenvector continuation at order N. In
this case we project H(c,) onto V¥ (0) and find the resulting
ground state. In essence, we have turned off all matrix
elements of H(c,) that involve vectors in V% (0). Let us now
turn on these matrix elements as a perturbation. When these
matrix elements are turned back on, we will get a first-order
correction to the wave function from transition matrix
elements connecting V" (0) with V/'(0). This will produce
a correction to the wave function that lies in V/(0). On
the other hand, the corrections to the coefficients of
w©(0)),...,[w™(0)) will appear at second order in
perturbation theory, since this involves transitions from
VN (0) to VY (0) and then returning back from V¥ (0) to
VN (0). If the norm of the residual vector for eigenvector
continuation is O(e), then eigenvector continuation and
vector continuation will differ at O(e?). This proves that
eigenvector continuation and vector continuation have
identical convergence properties in the limit of large N.

Let us now consider the norm of the “last term”
corresponding to n = N in Egs. (1), (2), and (4),

LY (e) = [(wM (0)]v(c,)

: (5)

Ly (¢,) = la(c,, N N), (6)
LET(e0) ={1+*(0) 55 ™)

Combining Egs. (5) and (3), we have

LX/C(Ct) =

3 (0] (0)) |

In this series expression, we will refer to the partial series
up to n = N as the leading order (LO) approximation. We
will call the partial series up to n = N + 1 the next-to-
leading order (NLO) approximation, and so on. The NKLO
approximation is therefore

X
LxC,N LO (Ct)

n=N
and at leading order we have

et

L) = 00 (0) &

. (10)

By comparing Eq. (10) with Eq. (7), we can understand
why vector continuation is converging more rapidly
than perturbation theory. In general, |(w)(0)|»™)(0))]
is smaller than the norm of [v(¥)(0)) because [v(¥)(0))
is not orthogonal to the lower derivative vectors
[00(0)), ..., [¥¥=1)(0)). Perturbation theory must deal
with constructive and destructive interference between
nonorthogonal vectors at different orders, a phenomenon
that we call differential folding. Differential folding can be
a very large effect, and it is the reason why perturbation
theory converges more slowly than vector and eigenvector
continuation.

In order to study the convergence properties systemati-
cally, let us define the convergence ratio obtained by taking
two widely separated orders N’ and N, with N > N’, and
computing the quantities

PV (er) = |LXC(e) /LN (ep)[ V=N, (11)
HEC () = |LEE (c0) /LR (c) |V VN, (12)
ﬂPT(Ct) = |LET(Cz)/LiT(Ct)|1/(N_Nl>‘ (13)

For notational convenience, we omit writing the explicit
dependence on N and N’. When it is clear from the context,
we also omit writing the dependence on c,. These defi-
nitions are motivated from the ratio test of convergence for
a series. Intuitively, y is the ratio at which consecutive terms
in the series converge (or diverge) asymptotically. We note
that these convergence ratio functions will have cusps
where the numerator vanishes and divergences where the
denominator vanishes. Fortunately, these special points
occur at only a few isolated values of ¢,, and the functions
in Eqgs. (11)—(13) provide a useful picture of the conver-
gence properties of the three methods. We can eliminate
cusps or divergences at any particular value of ¢, by
changing N or N'.

In our next example, model 2, we consider a system of
two-component fermions with attractive zero-range inter-
actions in three dimensions. At weak coupling the many-
body system forms a Bardeen-Cooper-Schrieffer (BCS)
superfluid, while at strong coupling it behaves as a Bose-
Einstein condensate (BEC) [16,17]. In between the BCS
and BEC regimes, there is a smooth crossover region that
contains a scale-invariant point called the unitary limit
where the scattering length diverges and the two-body
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FIG.2. Comparison of the convergence ratios 4V (c,), u¥(c,),
and 47 (c,) for model 2 with N = 10 and N’ = 0. The training
vectors for all cases are evaluated on the weak-coupling BCS
side at ¢ = —0.4695. The unitary limit value corresponds to
¢ =-3.957.

system has a zero energy resonance. There have been
numerous experimental studies of BCS-BEC crossover and
the unitary limit using trapped ultracold Fermi gases of
alkali atoms [18-21]. Here, we use eigenvector continu-
ation to study the crossover transition for two spin-up and
two spin-down fermions in an L = 4 periodic cubic lattice
as detailed in Ref. [22]. The Hamiltonian for this system
corresponds to a linear space with 262 144 dimensions and
is described in the Supplemental Material [15]. Our control
parameter ¢ corresponds to the product of the particle mass
m and interaction coupling C, as measured in dimension-
less lattice units.

The parameter value ¢ = —3.957 corresponds with the
unitary limit, with larger negative values corresponding to
the strong-coupling BEC phase, and smaller negative
values corresponding to the weak-coupling BCS phase.
For this example, the point ¢ = 0 corresponds to a non-
interacting system with special symmetries and degener-
acies, and so we choose the training vectors at a more
general point on the weak-coupling BCS side at
¢ = —0.4695. In Fig. 2 we show the convergence ratios
uVC, uEC, and 4PT versus ¢, for N = 10 and N’ = 0. We see
that 4VC and € remain well below wPT, indicating the
faster convergence of vector and eigenvector continuation
compared to perturbation theory. As we cross into the
strong-coupling BEC side, perturbation theory diverges, as
indicated by the convergence ratio ufT exceeding 1.
However, vector and eigenvector continuation both con-
verge even at very strong coupling far on BEC side, as
indicated by xV¢ and uF¢ both remaining well below 1.
Our findings point to a very intriguing future area of study
where the superfluid many-body wave function can per-
haps be reconstructed by variational methods throughout
the entire BEC-BCS crossover region. We note that the
vector and eigenvector continuation results are in close
agreement with each other, with only a slight difference

0.04 : ,
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S 0.02}
3
0.01}
0 . .
15 -1 0.5 0

FIG. 3. Plots of the convergence ratios V¢, uC, and the (1,1)

and (2,2) Padé approximations to u¥€ versus ¢, for model 3 with
N =20and N' =0.

when the convergence is slower. In the same figure, we plot
the LO, NLO, N’LO, N3LO, and N*LO approximations to
u¥C as defined in Eq. (9). We see that the expansion of y¥¢
converges for ¢, with a radius of convergence coinciding
with that of perturbation theory.

Outside the radius of convergence of perturbation theory,
we can still estimate the convergence ratio using extrapo-
lation methods. If there are no branch points nearby, then
the convergence ratio function can be extrapolated using
standard methods such as Padé approximants [5] or
conformal mapping [23,24]. To illustrate this, we consider
another example called model 3 where we can control the
location and sharpness of the avoided level crossings of
eigenvalues that cause the breakdown of perturbation
theory. Our model 3 Hamiltonian matrix resides in a linear
space with 500 dimensions and more details are given in the
Supplemental Material [15]. By design, the closest branch
point to ¢ = 0 occurs very close to the real axis, near the
point ¢ = 0.84. In Fig. 3 we plot x#¥€ and uF¢ for N = 20
and N’ = 0, and negative c,, extending beyond the radius of
convergence of perturbation theory of model 3. We also
show the (1,1) and (2,2) Padé approximations to u¥C. We
see that the Padé approximations describe the shape of yV¢
quite well since there are no nearby branch points.

If there is a branch point nearby, such as we have for
model 3 near ¢ = 0.84, the slope of the convergence ratio
function will rise more quickly than predicted by Padé
approximants or conformal mapping. This is because at the
branch point, the Riemann surface of the ground-state
eigenvector is entwined with the Riemann surface of the
first excited-state eigenvector. If the branch point is very
close to the real axis, then we have an avoided level
crossing or Landau-Zener transition where the wave
functions of the ground state and first excited-state inter-
change as we pass by the branch point.

We can therefore predict the rise of #¥¢ and F¢ from the
fall of u)C and pF© for the first excited state. We define p}©
and € in the same manner as 1V¢ and 45, except that we
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FIG. 4. Plots of the convergence ratios u"¢, )¢, uEC, uEC, and
the N*LO approximations to #¥¢ and )€ versus ¢, for model 3
with N =20 and N’ = 0.

replace the target ground state |v(c,)) with the first excited
state |v; (c,)), while using the same orthonormal basis states
|w(")(0)) associated with the ground state at ¢ = 0. For the
eigenvector continuation approximation of the first excited

state | (c,))EC we use a subspace that includes derivatives

of the ground state |v(*)(0)), ..., [v™)(0)) and also deriva-

tives of the first excited state |v(10) 0)), ..., v(,N) (0)).

In Fig. 4 we show uVC, uY€, uEC, uEC, and the N°LO
approximations to 4V and € for N = 20 and N’ = 0. We
note the approximate vertical and horizontal reflection
symmetries near the branch point. For ¢, < 0.84 the
increase in the ground-state convergence ratio mirrors
the decrease in the excited-state convergence ratio. Also
the increase in the ground-state convergence ratio for
¢; > 0.84 mirrors the decrease in the excited-state con-
vergence ratio for ¢, < 0.84.

We observe that for this case, a great deal of information
about the convergence of vector and eigenvector continu-
ation can be predicted from series expansions around
¢ = 0. Near the branch point we know that xV¢, and
therefore also uFC, crosses the midpoint of the gap between
N*LO approximations to x¥¢ and Y for any k. The NLO
approximations to #V¢ and )€ are calculated entirely from
perturbation theory at ¢ = 0. Also, the location of the
nearby branch point can itself be deduced from the
convergence radius of the series expansion. While there
are limits to how far we can go in ¢, with these convergence
ratio predictions, it is clear that we can predict the
convergence ratios both inside and outside the radius of
convergence from the derivatives of the eigenvectors near
¢ = 0. It is quite intriguing that this information can be
used to predict the nonperturbative convergence of vector
and eigenvector continuation.

We can now discuss the extension of eigenvector con-
tinuation to the case with D > 1 parameters. The multi-
parameter case is exactly equivalent to the one-parameter

case if we work with directional derivatives (¢, —¢) -V

acting upon |v(¢)). Here, ¢ is the limit point of the training
data and ¢, is the target point. But we now consider the
more difficult problem of convergence at all target points
at some fixed distance from ¢. If we want to construct
the kth directional derivative for any ¢, we will need all
(k+D —1)!/[k!(D —1)!] partial derivatives at order k.
Summing over all k from 0 to N gives (N + D)!/(N!D!).
Hence, if we want to achieve the same error as N + 1
training vectors in the one-parameter case, we need
(N+ D)!/(N!D!) training vectors for the D parameter
case. In the Supplemental Material [15] we show that this
performance analysis is consistent with our numerical
results for D =2 and D = 3.

In this Letter, we have presented the first study of the
convergence of eigenvector continuation. We found that the
series expansion of the wave function exhibits an effect
called differential folding, the interference among non-
orthogonal terms at different orders. Both vector and
eigenvector continuation avoid this problem. As a result,
they converge faster than perturbation theory and do not
diverge for any value of the control parameter. While most
studies of the divergence of perturbation theory focus on
series expansions of energy eigenvalues and other observ-
ables [23-29], our results provide new insights into these
divergences as arising from large nonorthogonal terms in
the series expansion of the wave function. In our analysis
we were able to predict how eigenvector continuation
converges outside the radius of convergence of perturbation
theory. All existing and future applications of eigenvector
continuation will benefit from this new fundamental under-
standing of the convergence of the method.
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