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We propose an operator product expansion for planar form factors of local operators in N ¼ 4 SYM
theory. This expansion is based on the dual conformal symmetry of these objects or, equivalently, the
conformal symmetry of their dual description in terms of periodic Wilson loops. A form factor is
decomposed into a sequence of known pentagon transitions and a new universal object that we call the
“form factor transition.” This transition is subject to a set of nontrivial bootstrap constraints, which are
sufficient to fully determine it. We evaluate the form factor transition for maximally helicity-violating form
factors of the chiral half of the stress tensor supermultiplet at leading order in perturbation theory and use it
to produce operator product expansion predictions at any loop order. We match the one-loop and two-loop
predictions with data available in the literature.
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Introduction.—The past ten years saw huge progress in
our understanding of null polygonal Wilson loops, which
was primarily motivated by the fact that these objects
describe color-ordered scattering amplitudes in planarN ¼
4 SYM theory. Another motivation lies in them controlling
a certain limit of correlation functions of local operators in
this theory [1–5]. A further class of fundamental observ-
ables with a dual description in terms of certain null
polygonal Wilson loops are form factors (FFs) [6–10];
in terms of complexity, they lie somewhere in between
scattering amplitudes and correlation functions.
The FF FO describes the overlap of a state created by a

local operator O with an n-particle asymptotic state:

FOðk1;…; kn; qÞ ¼
Z

dx4e−ixqhk1;…; knjOðxÞj0i; ð1Þ

which has support on q ¼ P
i ki. While k2i ¼ 0, generically

q2 ≠ 0. Because of the dependence on the local operator
FFs are richer than scattering amplitudes, which themselves
can be thought of as FFs of the identity operator. The
simplest nontrivial operator to consider is the chiral half of
the stress tensor supermultiplet, which contains the self-
dual part of the Lagrangian, FL. Operators in this multiplet
preserve half of the supersymmetry and their FFs can be
classified according to the helicity of the external particles.

In this Letter, we focus on the simplest, maximally helicity-
violating (MHV) configuration of the color-ordered form
factor, FMHV

L ðk1;…; knÞ, which in many ways resembles
MHV scattering amplitudes.
Many of the perturbative methods for computing scatter-

ing amplitudes have been generalized to FFs, see the recent
review [11] for a detailed account. Moreover, integrable
structures have been identified in FFs at strong coupling
[7,12] as well as at weak coupling [13].
At the nonperturbative level, the only systematic method

of studying scattering amplitudes is the operator product
expansion (OPE), which is based on dual conformal
symmetry [14]. This powerful property of planar ampli-
tudes is nothing but the conformal symmetry of their dual
description in terms of null polygonal Wilson loops. The
momenta of the particles, ki, determine the positions of the
cusps of this Wilson loop by the simple rule xiþ1 − xi ¼ ki.
For FMHV

L , the dual Wilson loop is determined in the same
way. However, because the total momentum q ≠ 0, the
corresponding contour is not closed, but periodic:
xiþn − xi ¼ q. The periodicity is also imposed at the
quantum level and mixes the spacetime translation with
the color trace [9,15]. As a result, this periodic Wilson loop
is only defined in the planar limit. We will also refer to it as
a wrapped polygon, since it is wrapped once around a
cylinder topology. Similar to amplitudes, FFs are invariant
under a version of dual conformal symmetry—one that acts
on both the cusps xi of the wrapped polygon and its
periodicity constraint [9,10,16]. The existence of this
nontrivial symmetry suggests that the OPE method can
be extended to FFs. In this Letter, we present this extension
explicitly.
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The OPE is a decomposition of the FF into two types of
universal building blocks. One of them is the pentagon
transition, which is independent of the operator O and has
been bootstrapped at finite coupling in Refs. [17–26] using
the integrability of the Gubser-Klebanov-Polyakov (GKP)
flux tube. The other building block is the form factor
transition that we introduce here, which encodes the
information about O. We also expect that it can be
bootstrapped at finite coupling. One can draw an analogy
between the FF OPE and the OPE for local operators in a
conformal field theory (CFT). The pentagon transitions are
analogous to the three-point functions, while the FF
transition is analogous to the one-point function that can
arise at nonzero temperature or in the presence of a defect.
Form factor OPE.—We decompose an n-sided wrapped

polygon into one two-sided wrapped polygon and n − 2
pentagons, which overlap on n − 2 “middle squares,” as
shown in Fig. 1.
A null square is invariant under three commuting

conformal symmetries; they are parametrized by τ, σ,
and ϕ that are conjugate to the GKP twist, conformal spin,
and angular momentum in the transverse plane, respec-
tively. We use these symmetries to parametrize all con-
formally inequivalent n-sided wrapped polygons by a set of
3n − 7 independent conformal cross ratios as follows. To
squares that are associated with an overlap of two penta-
gons, we assign three conformal cross ratios fτi; σi;ϕign−3i¼1

that are defined in the same way as for closed polygons, see
Fig. 2 in Ref. [17]. Similarly, for the last square the
conformal cross ratios τn−2 and σn−2 are defined in
Fig. 2, while ϕn−2 ¼ 0.
The UV divergences of the periodic Wilson loops are

regularized using the pentagons, the squares, and the two-
sided wrapped polygon of the decomposition. Concretely,
we are considering the ratio Wn defined in Fig. 3.
The operator product expansion is the large τ expansion

in which the sides of the polygon on top of each square are
decomposed into a superposition of GKP flux-tube exci-
tations. This flux is sourced by two opposite sides of the
corresponding square. We start with the vacuum state in the

top square in Fig. 1. It undergoes a series of pentagon
transitions from one square to the next, with an eigenstate
in the ith channel denoted as ψ i. The propagation of this
state results in the factor expð−Eiτi þ ipiσi þ imiϕiÞ,
where fEi; pi; mig are the GKP energy, momentum, and
angular momentum, respectively. Finally, the state ψn−2 is
absorbed by the two-sided periodic Wilson loop. We call
this final step the form factor transition. In summary, this
sequence of transitions and propagation can be written as

Wn ¼
X

ψ1;…;ψn−2

e
P

j
ð−EjτjþipjσjþimjϕjÞ

× Pð0jψ1Þ…Pðψn−3jψn−2ÞF ðψn−2Þ: ð2Þ

Here, P denotes the pentagon transition and F is the form
factor transition.
The decomposition [Eq. (2)] applies to periodic Wilson

loops in any conformal theory with a stable flux between
fast-moving quarks. For the rest of this Letter we focus on
N ¼ 4 SYM theory, in which periodic Wilson loops are
dual to form factors. Under this duality, the OPE maps to
the expansion around the multicollinear limit. Moreover,
the GKP flux-tube dynamics of this theory is integrable.
Therefore, we expect to be able to bootstrap the building
blocks entering Eq. (2) at finite ’t Hooft coupling.
The basis of GKP eigenstates as well as their dispersion

relations have been constructed in Ref. [27]. The pentagon

FIG. 1. Decomposition of an n-sided wrapped polygon into a
sequence of pentagons and a two-sided wrapped polygon.

FIG. 2. We associate two independent conformal cross ratios, τ
and σ, to the last OPE channel. For an n-particle FF, these are
denoted as τn−2 and σn−2. Here,PðxÞ stands for the periodic image
of the point x. Under a conformal transformation x → KðxÞ, the
periodic image transforms as PðxÞ → P̃ðKðxÞÞ ¼ KðPðxÞÞ. In a
conformal frame in which P is a translation, PðxÞ − x is inde-
pendent of the point x and the expressions for the two conformal
cross ratios in the figure simplify to complete squares.

FIG. 3. A finite conformally invariant ratio is constructed by
multiplying the n-sided wrapped polygon by all squares except
for the first and dividing by all pentagons as well as the two-sided
wrapped polygon, Wn¼½hWn-ptFFi×hW2ndsquareihW3rdsquarei…=
hW2-ptFFi×hW1stpentagonihW2ndpentagoni…�. Here, this ratio is illus-
trated for n ¼ 4.
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transitions and integration (or square) measures have been
bootstrapped in Refs. [17–26]. Hence, in order to compute
planar form factors in N ¼ 4 SYM theory, all that remains
is to bootstrap one new building block—the form factor
transition. This object is universal; it does not depend on
the number of particles or their kinematical configuration,
but only on the local operator and the GKP eigenstate. In
the next sections, we study the FF transitions for the chiral
part of the stress tensor supermultiplet. Before, let us set our
notations, which are aligned with the ones introduced
in Ref. [17].
The simplest form factor FL that admits a nontrivial

OPE decomposition is the three-point MHV one. For this
case, we have

W3 ¼
X
a

Z
duPað0juÞFāðūÞe−τEðuÞþiσpðuÞ; ð3Þ

where we sum over the complete basis of GKP eigen-
states. These states are parametrized by the number of
excitations N, their species a ¼ fa1;…; aNg, and
their flux-tube momenta or, equivalently, their Bethe
rapidities u ¼ fu1;…; uNg, with ā ¼ faN;…; a1g and
ū ¼ f−uN;…;−u1g. Here, Pa are the pentagon transitions,
and the integration measure is given by du ¼
N a

Q
N
i¼1 μaiðuiÞðdui=2πÞ, with μa being the single-particle

measures and N a being a symmetry factor. Lastly, Fa are
the FF transitions that will be studied in the following two
sections.
The form factor transition.—The FF transition computes

the amplitude for a GKP in-state to be absorbed by the two-
sided wrapped polygon, see Fig. 4. It is subject to a set of
constraints that we list below. These constraints are similar
to those obeyed by integrable two-dimensional form factors
of a branch-point operator of angle π. In Ref. [28], we use
them to bootstrap the FF transitions at finite ’t Hooft
coupling.
Watson: Reordering two adjacent excitations within a

state is equivalent to acting on it with the S matrix. This
property is inherited by the FF transition:

Fð…; uj; ujþ1;…Þ ¼ Sðuj; ujþ1ÞFð…; ujþ1; uj;…Þ; ð4Þ

where we have suppressed the species index.

Singlet: The two-sided wrapped polygon is invariant
under a Uð1Þϕ × SUð4ÞR symmetry, where the Uð1Þϕ
factor corresponds to rotations in the two-dimensional
transverse plane and SUð4ÞR is the R-symmetry group.
As a result, the FF transition must be a Uð1Þϕ × SUð4ÞR
singlet:

Fa1;…;anðuÞ ¼ Mb1
a1…Mbn

anFb1;…;bnðuÞ; ð5Þ

where M ∈ Uð1Þϕ × SUð4ÞR. As such, it can only absorb
singlet states.
As the fundamental GKP excitations are all charged

under Uð1Þϕ × SUð4ÞR, the FF transition cannot absorb a
single-particle excitation. Moreover, only singlet states
with even Born-level energy can contribute to the FF
transition [28]. As a result, at any loop order only even
powers of e−τ can appear in the large τ expansion Eq. (3).
Reflection: In addition to the continuous symmetries

above, the two-sided wrapped polygon is also invariant
under a discrete Z2 symmetry. It acts by flipping the
direction of the two edges. This transformation has the
effect of inverting the σ direction. As a result, the FF
transition is subject to the relation.

FaðuÞ ¼ FāðūÞ: ð6Þ

Square limit: The FF transition and the measure are
related by

lim
u1→un

FaðuÞ ¼
−iδan;ā1
μa1ðu1Þ

Fa2;…;an−1ðu2;…; un−1Þ
u1 − un − iϵ

�
�
Sðu1; unÞ

Y
1<j<n

Sðu1; ujÞSðuj; unÞ
�

b

a

×
−iδbn;b̄1
μb1ðu1Þ

Fb2;…;bn−1ðu2;…; un−1Þ
un − u1 − iϵ

; ð7Þ

where the plus sign is for bosons and the minus sign for
fermions. This relation represents a factorization limit in
which a pair of excitations decouples from the rest [28].

FIG. 5. Applying a mirror transformation to the first excitation
is equivalent to transporting it to the neighboring edge on the left.
After two successive mirror transformations, or a crossing
transformation, the first excitation becomes the last one.

FIG. 4. The FF transition is given by the ratio between the
expectation value of the two-sided wrapped polygon with and
without GKP excitations inserted on its base.
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Crossing: The most nontrivial constraint has to do with
the crossing symmetry of the transition and is depicted in
Fig. 5. It reads

Fðu2γ1 ; u2;…; unÞ ¼ Fðu2;…; un; u1Þ: ð8Þ

Here, uγ is a mirror transformation such that pðuγÞ ¼ iEðuÞ
and EðuγÞ ¼ ipðuÞ, see Ref. [27].
FF transitions at Born level.—The leading contribution

to the OPE Eq. (3) comes from the lightest singlet state.
In perturbation theory, this contribution stems from three
two-particle singlet states and two one-particle effective
excitations, but the latter do not contribute at leading
order [29]. All of them have the same tree-level energy
E ¼ 2. Each of the three two-particle singlet states is a
superposition of all possible singlet combinations of two
scalar (ϕϕ̄), two fermion (ψψ̄), and two gluon (FF̄) fields
inserted on the base of the wrapped polygon in Fig. 4.
These states differ in the asymptotic limit, in which the
two fields are taken far apart. Only one out of the three
pairs of fields survives in this limit, and this is the pair
that labels the state.
In Ref. [29], we have explicitly constructed the afore-

mentioned superpositions that correspond to the three two-
particle singlet states at Born level. We will now use them
to compute the Born-level FF transitions we denote by Fϕϕ̄,
Fψψ̄ , and FFF̄.
At leading order in perturbation theory, the expectation

value of the two-sided wrapped polygon is equal to 1.
Hence, only the numerator in Fig. 4 contributes to the
transition nontrivially. Consider the wrapped polygon
with two conjugate fields inserted at positions σ1 and
σ2 with σ2 > σ1. At Born level, we obtain the propagator
between the field at σ2 and the periodic image of the field
at σ1:

ð9Þ

where Φs is a field of conformal spin s ¼ 1
2
, 1, 3

2
for

scalars, fermions, and gluons, respectively.
Convoluting the singlet states given in Ref. [29] with the

propagator Eq. (9), we arrive at

Fϕϕ̄ðu; vÞ ¼ −
4

g2ðu − v − 2iÞðu − v − iÞ

×
Γðiu − ivÞ

Γð1
2
þ iuÞΓð1

2
− ivÞ ;

Fψψ̄ ðu; vÞ ¼ þ 2

g2
u sinhðπuÞδðu − vÞ;

FFF̄ðu; vÞ ¼ −
2

g2

�
u2 þ 1

4

�
coshðπuÞδðu − vÞ; ð10Þ

where g2 ¼ ½ðg2YMNÞ=ð16π2Þ�. Note that for two gluons and
two fermions, the right-hand side of Eq. (7) reduces to a
delta function divided by the measure. We see that for these
states the full Born level result is given solely by this simple
square limit contribution. This might be surprising, because
the contribution of each type of fields to Eq. (10) is highly
nontrivial, but they combine to an almost trivial result.
Perturbative tests and predictions.—We now perform a

perturbative test of the FF OPE and use it to make higher
loop predictions.
We start by extracting the OPE data from previously

computed form factors [8]. At one-loop order, we find the
ratio Wn¼3 defined in Fig. 3 to be given by

Wð1Þ
3 ¼ 4σ2 − 2Li2ð−e−2τÞ þ 2Li2ð−e−2τ − e2σÞ

þ 2Li2½−e−2τ − e−2σð1þ e−2τÞ2� þ π2

3
; ð11Þ

where W3 ¼ 1þP∞
l¼1 g

2lWðlÞ
3 . As expected from the

singlet axiom, the large τ expansion of Wð1Þ
3 contains only

even powers of e−τ, with the leading one given by

Wð1Þ
3 ¼ 2e−2τ½1 − 2σe−2σ − 4cosh2ðσÞ log ð1þ e−2σÞ�

þOðe−4τÞ: ð12Þ

On the OPE side, we insert the Born-level FF transitions
Eq. (10) into Eq. (3) and perform the integration over the
two rapidities, finding a perfect match with Eq. (12).
Even without the higher loop FF transitions, we can

already make certain all-loops predictions. Namely, at
l-loop order we can predict the term with the highest power
of τ, i.e., τl−1e−2τ. It is given by pulling down (l − 1) powers

of the one-loop correction to the energy g2½Eð1Þ
2s ðu1Þþ

Eð1Þ
2s ðu2Þ� from the exponent e−τ½E2sðu1ÞþE2sðu2Þ�. The one-loop

correction to the energy of the individual excitations is given

by Eð1Þ
2s ðuÞ ¼ 2½ψðsþ iuÞ þ ψðs − iuÞ − 2ψð1Þ�, where

ψðxÞ ¼ ½Γ0ðxÞ=ΓðxÞ� is Euler’s digamma function [27].
With the two-loop data available for the three-point form

factor reminder function R3 [30], we can test the OPE
prediction for the τe−2τ term inW3 at two-loop order. To do
so, one first has to translate between these two finite dual
conformally invariant functions,R andW. They are related
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as Wn ¼ exp½1
4
ΓcuspW

ð1Þ
n � ×Rn, where Γcusp ¼ 4g2 þ � � �

is the cusp anomalous dimension. Using this relation, we
obtain the following result:

Wð2Þ
3;τe−2τ

¼ −8½1 − ð1þ e−2σÞ log ð1þ e2σÞ�
× ½1 − ð1þ e2σÞ log ð1þ e−2σÞ�; ð13Þ

which is in perfect agreement with the OPE prediction.
At three-loop order, we can predict the term proportional

to τ2e−2τ:

Wð3Þ
3;τ2e−2τ

¼ 16

3
cosh2ðσÞ log ð1þ e−2σÞf12σð4− 3σÞ− 24− π2

þ 8 log ð1þ e−2σÞ½3− 6σ − 2 log ð1þ e−2σÞ�g þ 4π2

3

þ 24− 16σð4− 3σþ 4e−2σÞ− 32cosh2ðσÞLi3ð−e−2σÞ:
ð14Þ

Similarly, we can produce higher loop predictions; we
refrain from giving these explicitly due to their size.
Discussion.—In this Letter, we have introduced an

operator product expansion for form factors in planar N ¼
4 SYM theory. It reduces the computation of the dual
periodic Wilson loop to known fundamental building
blocks [17,19] and a single new universal building block
—the FF transition.
We have calculated the two-particle FF transition at Born

level, Eq. (10). A natural finite-coupling ansatz for the
gluonic and fermionic two-particle FF transitions that is
consistent with all the constraints is

FΦΦ̄ðu; vÞ ∝
δ½pΦðuÞ − pΦðvÞ�

μΦðuÞ
×
∂pΦðuÞ
∂u ; ð15Þ

where Φ ∈ fψ ; Fg and pΦðuÞ is the GKP momentum.
Based on this conjecture, the bootstrap constraints for the
FF transition that we formulated in this Letter, and the
perturbative data available to us, we were able to fix the
remaining scalar two-particle FF transition at finite cou-
pling [28]. Transitions involving more than two flux-tube
excitations can hopefully be fixed in terms of the two-
particle ones using integrability. Our construction therefore
opens the door for finite-coupling computations of FFs.
There are multiple future directions to pursue, some of

which we list below. (i) At strong coupling, the FFs are
computed by minimizing the area of a periodic string in
AdS5 [7,12]. We expect the corresponding Yang-Yang
functional to be constructed from the gluon and fermion
FF transitions, Eq. (15), along with the corresponding
pentagon transitions and measures. (ii) In this Letter, we
have only considered MHV FFs of the chiral part of the

stress tensor supermultiplet. It would be interesting to
extend our considerations to the NkMHV case, for which
the result is expected to be given by a version of the
superperiodic Wilson loop introduced in Ref. [9]. In
parallel, it would be interesting to bootstrap the corre-
sponding charged FF transitions, in analogy to the charged
pentagon transitions of Refs. [21,22]. (iii) Another inter-
esting direction is to consider local operators other than the
chiral part of the stress tensor supermultiplet; correspond-
ing FFs have been studied in Refs. [31–41]. T duality is
expected to map their higher integrability Yangian charges
into dual ones [42,43] that are evaluated along one period
of the dual Wilson loop. (iv) It is possible to extend the
hexagon function program of Refs. [44–47] to analogous
FF functions [48]. The interplay between the OPE and
these FF functions provides a plethora of valuable checks
of our predictions and vice versa. (v) Finally, it would be
interesting to see if our considerations can be used for
studying FFs in other theories like Aharony-Bergman-
Jafferis-Maldacena theory [49].
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