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We construct the tensionless limit of bosonic string theory in terms of a family of worldsheets with
increasing acceleration and show that the null string emerges in the limit of infinite acceleration when the
Rindler horizon is hit. We discover a novel phenomenon we call null string complementarity, which gives
two distinct observer-dependent pictures of the emergence of open string physics from closed strings in the
tensionless limit. The closed string vacuum as observed by the inertial worldsheet turns into a D instanton
in the tensionless limit, while in the complementary picture from the accelerated worldsheet, one sees the
emergence of a D-25 brane. We finally discuss approaching the Rindler horizon through time evolution at
constant acceleration and also show how an open string picture arises very naturally.
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Introduction.—The study of physics in accelerated
frames of reference is an intriguing and fruitful venture.
Accelerated observers in Minkowski spacetimes view the
Rindler metric and experience a horizon. The entire
Minkowski diamond is not accessible to them anymore,
and in this frame of reference, physics is thermal. Because
of the unavailability of information from beyond the
Rindler horizon, the density matrix of this accelerated
observer is related to that of an inertial Minkowski observer
by partially tracing over the inaccessible degrees of free-
dom. All of this is, of course, well understood and is very
useful for black hole physics since the near-horizon limit of
a black hole typically yields a Rindler spacetime. Our
discussions in this Letter are rather unique. We want to
understand the aspects of Rindler physics on the worldsheet
of a closed string. Our motivation for doing so is also rather
novel, as we elaborate below.
String theory is currently the most promising of avenues

for formulating a theory of quantum gravity. One of its
primary endearing features is the paucity of tuneable
parameters. The free theory has only one, the length of
the fundamental string (ls). ls → 0 reduces the string to a
point particle and the theory to the well-understood
Einstein theory of general relativity. In this work, we are
interested by the other extreme limit, where ls → ∞ [1].
This bizarre limit corresponds to the ultrastringy regime of
string theory that is very different from Einstein’s theory.

The quantum version of this theory would be “very stringy”
quantum gravity. This limit also takes the tension of the
fundamental string to zero. Our objective in this Letter is to
formulate the decreasing string tension in terms of accel-
erated string worldsheets.
The tensionless string is a null string with a degenerate

worldsheet metric. We will show in this Letter that the
worldsheet analog of hitting the Rindler horizon leads to
the formation of the null string. Rindler observers can
approach the horizon in two distinct ways: time evolution at
a fixed acceleration or evolution in acceleration at a
constant time. The limit from the tensile to the tensionless
string can also be formulated in terms of increasingly
accelerated worldsheets or time evolution on a constant
acceleration worldsheet. We shall follow both routes with
interesting consequences, the most intriguing among which
is what we call null string complementarity. Depending on
whether the observer sits on an inertial worldsheet and
observes an accelerated one, or vice versa, they see the
emergence of different complementary boundary states as
the closed string becomes tensionless. The inertial world-
sheet sees the accelerated closed string vacuum evolve into
a spacetime point, a D instanton, while the infinitely
accelerated observer sees the inertial vacuum grow into
a space-filling D-25 brane. No one observer has access to
both pictures.
Rindler physics.—Accelerated observers in Minkowski

spacetimes moving on trajectories x2 − t2 ¼ κ−2 (κ is
proper acceleration) describe Rindler space with the metric

ds2R ¼ e2aξð−dη2 þ dξ2Þ: ð1Þ

Minkowski and Rindler spacetimes are linked by
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t ¼ 1

a
eaξ sinh aη; x ¼ 1

a
eaξ cosh aη; ð2Þ

where κ ¼ ae−aξ, and a is the redefined acceleration.
Equation (2) is for the right Rindler wedge only
(R∶jtj < x; x > 0). There is an equivalent left wedge
(L∶jtj < x; x < 0), for which Eq. (2) picks up negative
signs.
We now consider a massless scalar field theory in

Rindler spacetime [2]. Since flat and Rindler backgrounds
are conformally related, the equations of motion (EOMs)
for the field are the same:

□t;xϕ ¼ 0 ¼ □η;ξϕ: ð3Þ

For the Minkowski solution, now defined on a cylinder
ðσ; τÞ, the wave equation is solved by

ϕðσ; τÞ ¼ ϕ0 þ
ffiffiffiffiffiffiffi
2α0

p
α0τ

þ i

ffiffiffiffi
α0

2

r X
n

�
αn
n
e−inðτþσÞ þ α̃n

n
e−inðτ−σÞ

�
; ð4Þ

where oscillators satisfy ½αn; αm� ¼ nδnþm and annihilate
the Minkowski vacuum j0iM. To match with usual scalar
field modes, we write (4)

ϕðσ; τÞ ¼ ϕ0 þ
ffiffiffiffiffiffiffi
2α0

p
α0τ

þ
ffiffiffiffiffiffiffiffiffi
2πα0

p X
n>0

½αnun þ α−nu�n þ α̃nũn þ α̃−nũ�n�;

ð5Þ

where un ¼ ½ie−inðτþσÞ�= ffiffiffiffiffiffi
4π

p
n, ũn ¼ ½ie−inðτ−σÞ�= ffiffiffiffiffiffi

4π
p

n.
Similarly, we write the Rindler mode expansion as

ϕðξ; ηÞ ¼ ϕ0 þ
ffiffiffiffiffiffiffi
2α0

p
β0ξ

þ
ffiffiffiffiffiffiffiffiffi
2πα0

p X
n>0

½βnUn þ β−nU�
n þ β̃nŨn þ β̃−nŨ�

n�;

ð6Þ

where the mode functions are now defined as

Un ¼
ie−inðξþηÞffiffiffiffiffiffi

4π
p

n
; Ũn ¼

ie−inðξ−ηÞffiffiffiffiffiffi
4π

p
n

: ð7Þ

The oscillators ðβ; β̃Þ now act on a new vacuum j0iR.
Importantly, Un is only defined in the L wedge (hence
called UðLÞ

n ) and Ũn only in the R wedge (UðRÞ
n ), unlike flat

space. To continue between wedges, one needs to define the
smearing functions. The combinations analytically contin-
ued in both wedges take the form [3]

UðRÞ
n − e−ðπn=aÞUðLÞ�

−n ; UðRÞ�
−n − eðπn=aÞUðLÞ

n : ð8Þ

Using these combinations of modes lead us to Bogoliubov
transformations between the two sets of oscillators in
Rindler and Minkowski space with a form [3]

βn ¼
eπn=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh πn

a

p αn −
e−πn=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh πn

a

p α̃−n; ð9aÞ

β̃n ¼ −
e−πn=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh πn

a

p α−n þ
eπn=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh πn

a

p α̃n: ð9bÞ

Equation (9) forms the backbone of our analysis in this
Letter.
Intrinsic look at tensionless strings.—The starting point

of our recapitulation is the action [4]

SILST ¼
Z

d2ξVαVβ∂αXμ∂βXνημν: ð10Þ

Equation (10) can be obtained from the Polyakov action for
the bosonic string as tension T → 0 [4], where vector
densities Vα replace the degenerate worldsheet metric. Like
in tensile string theory, Eq. (10) enjoys worldsheet diffeo-
morphism symmetry and needs to be gauge fixed. In the
Vα ¼ ð1; 0Þ gauge, the residual symmetry is

½Ln; Lm� ¼ ðn −mÞLnþm þ cLδnþm;0ðn3 − nÞ;
½Ln;Mm� ¼ ðn −mÞMnþm þ cMδnþm;0ðn3 − nÞ;
½Mn;Mm� ¼ 0: ð11Þ

This is the 3d Bondi-Metzner-Sachs (BMS3) algebra (here
with cL ¼ cM ¼ 0), which also arises as the asymptotic
symmetries of 3D flat spacetimes at its null boundary [5],
and has been used to construct a notion of Minkowskian
holography following Ref. [6]. For tensionless strings,
BMS3 replaces the two copies of the Virasoro algebra that
dictate the construction of tensile strings [7].
In the Vα ¼ ð1; 0Þ gauge, the EOMs of Vα give con-

straints while the EOM for X takes a simple form

Ẍμ ¼ 0; constraints∶ _X · X0 ¼ 0; _X2 ¼ 0: ð12Þ

With closed string boundary conditions Xμðτ; σÞ ¼
Xμðτ; σ þ 2πÞ, the EOM can solved by [8]

Xμðσ; τÞ ¼ xμ þ
ffiffiffiffi
c0

2

r
Bμ
0τ þ i

ffiffiffiffi
c0

2

r X
n≠0

1

n
ðAμ

n − inτBμ
nÞe−inσ:

ð13Þ

In the above, c0 is a length scale introduced for dimensional
consistency. This expansion also leads to the constraints in
the form
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Ln ¼
1

2

X
m

A−m · Bmþn; Mn ¼
1

2

X
m

B−m · Bmþn: ð14Þ

A, B are not the usual harmonic oscillator modes:

½Am; An� ¼ ½Bm; Bn� ¼ 0; ½Am; Bn� ¼ 2mδmþn: ð15Þ

The algebra of constraints leads to the BMS3 algebra as
before. We transform ðA;BÞ into a harmonic oscillator
basis:

2Cμ
n ¼ ðAμ

n þ Bμ
nÞ; 2C̃μ

n ¼ ð−Aμ
−n þ Bμ

−nÞ: ð16Þ

C, C̃ now have canonical commutation relations analogous
to tensile α oscillators. Mode expansion in terms of these C
modes reads [9]

Xμðσ; τÞ ¼ xμ þ 2

ffiffiffiffi
c0

2

r
Cμ
0τþ i

ffiffiffiffi
c0

2

r

×
X
n≠0

1

n
½ðCμ

n − C̃μ
−nÞ− inτðCμ

n þ C̃μ
−nÞ�e−inσ ð17Þ

with zero modes Cμ
0 ¼ C̃μ

0 ¼
ffiffiffiffiffiffiffiffiffi
c0=2

p
kμ.

Tensionless strings as a Carrollian limit.—In the dis-
cussion above, the string tension was put exactly to zero.
Now we describe a limiting procedure on the worldsheet
coordinates that takes the tension to zero [7,8]:

σ → σ; τ → ϵτ; α0 → c0=ϵ; ϵ → 0: ð18Þ

This sends the worldsheet speed of light to zero and is
called an ultrarelativistic (UR) or a Carrollian limit. In this
limit, the worldsheet becomes a 2D Carrollian manifold
[10,11] with a degenerate metric which is the defining
feature of a tensionless or a null string. The worldsheet
symmetry generators contract

Ln ¼ Ln − L̄−n; Mn ¼ ϵðLn þ L̄−nÞ ð19Þ

(here, Ln, L̄n generate the tensile Virasoro algebra) and
close to form BMS3. Comparing tensile modes [analog of
Eq. (4)] and the tensionless expansions (13), we get

Aμ
n ¼ 1ffiffiffi

ϵ
p ðαμn − α̃μ−nÞ; Bμ

n ¼
ffiffiffi
ϵ

p ðαμn þ α̃μ−nÞ: ð20Þ

All classical physics of the tensionless string can be
reproduced by following this UR limit. The Carrollian
limit is usually perceived as a limit on velocities and hence
an infinite boost. The tensionless limit is thus an infinite
boost on the Riemannian worldsheet of a tensile string that
turns it into a degenerate Carrollian worldsheet.
Interestingly, switching to the language of C oscillators,

we find the emergence of a worldsheet Bogoliubov trans-
formation:

Cμ
n ¼ 1

2

� ffiffiffi
ϵ

p þ 1ffiffiffi
ϵ

p
�
αμn þ 1

2

� ffiffiffi
ϵ

p
−

1ffiffiffi
ϵ

p
�
α̃μ−n;

C̃μ
n ¼ 1

2

� ffiffiffi
ϵ

p
−

1ffiffiffi
ϵ

p
�
αμ−n þ 1

2

� ffiffiffi
ϵ

p þ 1ffiffiffi
ϵ

p
�
α̃μn: ð21Þ

Although the C oscillators have been defined near ϵ → 0,
curiously at ϵ ¼ 1 they reduce to the α oscillators. This
encourages us to define a flow valid throughout the
parameter space ϵ ∈ ½0; 1�. For any evolving oscillator
CðϵÞ interpolating between α for ϵ ¼ 1 and Eq. (21) near
ϵ → 0, the vacua defined by the flow j0ðϵÞi change
continuously with ϵ:

j0ðϵÞi∶ CnðϵÞj0ðϵÞi ¼ C̃nðϵÞj0ðϵÞi ¼ 0; ∀ n > 0: ð22Þ

An evolution in boost can only lead to changes in physics
(e.g., change in vacuum structure, changes in spectrum) in
the limit of infinite boosts. This ϵ evolution changes the
vacuum continuously and hence cannot be thought of as an
evolution in boosts. As we will now see, this evolution in
parameter space is very naturally explained by accelerating
string worldsheets. The identification (21) stays valid near
ϵ → 0, while a map for the whole parameter space emerges
through acceleration.
Reaching the horizon I: Evolving in acceleration.—We

now build the string equivalent of a Rindler observer
approaching the Rindler horizon by considering a family
of worldsheets with increasing values of acceleration. In the
limit of large acceleration, the Bogoliubov coefficients (9)
become

β∞n ¼ 1

2

� ffiffiffiffiffiffi
πn
2a

r
þ

ffiffiffiffiffiffi
2a
πn

r �
αn þ

1

2

� ffiffiffiffiffiffi
πn
2a

r
−

ffiffiffiffiffiffi
2a
πn

r �
α̃−n;

β̃∞n ¼ 1

2

� ffiffiffiffiffiffi
πn
2a

r
−

ffiffiffiffiffiffi
2a
πn

r �
α−n þ

1

2

� ffiffiffiffiffiffi
2a
πn

r
þ

ffiffiffiffiffiffi
πn
2a

r �
α̃n: ð23Þ

This limit takes us very near the light cone. Comparing
Eq. (23) with Eq. (21), we see that we can make the
identification

Cn ¼ β∞n ; C̃n ¼ β̃∞n ; ϵ ¼ πn
2a

: ð24Þ

The limit of zero tension is thus the limit of infinite
acceleration

ϵ → 0 ⇒ a → ∞: ð25Þ

This is because the equivalence has to hold for all n [12].
The evolution in parameter space alluded to earlier is

thus clearly an evolution in terms of accelerated world-
sheets defined for all values of acceleration. This picture of
a family of accelerated worldsheets ties in nicely with our
earlier description of the UR limit, as the limit of infinite
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boost and the limit of infinite acceleration both land up on
the horizon of Rindler spacetime, which in the string analog
is equivalent to the null string.
The flow in acceleration is a flow from the tensile to the

tensionless string. Hence, increasing acceleration amounts
to decreasing string tension, with a ¼ 0 being the tensile
theory and a → ∞ the tensionless null string. This flow is
now described for all values of acceleration giving us a
complete interpolating solution. The string oscillator con-
struction through the flow is described in terms of the
interpolating β oscillators defined in Eq. (9). At a ¼ 0,
from Eq. (9), we see that β reduces to tensile string α
oscillators. For intermediate values of a, i.e., 0 < a < ∞,
we have the β oscillators. Very near the light cone, as
a → ∞, the β oscillators take the form of the tensionless C
oscillators,

a ¼ 0∶ fβn; β̃ng → fαn; α̃ng; ð26aÞ

0 < a < ∞∶ fβnðaÞ; β̃nðaÞg; ð26bÞ

a → ∞∶ fβn; β̃ng → fCn; C̃ng: ð26cÞ

We will now use these oscillators to understand the
evolution of the vacuum structure of the string.
Structure of accelerated vacua.—The vacuum conditions

on these accelerated worldsheets are

βμkj0ðaÞi ¼ ðαμk þ tanh θkα̃
μ
−kÞj0ðaÞi ¼ 0; k > 0;

β̃μkj0ðaÞi ¼ ðα̃μk þ tanh θkα
μ
−kÞj0ðaÞi ¼ 0; ð27Þ

where tanh θk ¼ − exp ð−πk=aÞ. Written in terms of the
tensile closed string vacuum j0iα, the accelerated vacuum is
a squeezed state:

j0ðaÞi ¼
Y∞
k¼1

1

cosh θk
exp

�
−
tanh θk

k
α†k · α̃

†
k

�
j0iα: ð28Þ

As a → ∞, the map to ϵ Eq. (24) emerges. We find
tanh θ ¼ ½ðϵ − 1Þ=ðϵþ 1Þ�, so tanh θ → −1 as ϵ → 0, and
the resulting limiting vacuum state j0ic is

j0ic ¼ lim
a→∞

j0ðaÞi ¼ 1

N

Y∞
n¼1

exp

�
1

n
α†n · α̃

†
n

�
j0iα: ð29Þ

Here, N is a normalization constant. Relations between C
and α are invertible, and j0iα can be expressed in terms of
j0ðaÞi. This would be the string equivalent of a Rindler
observer looking at their Minkowski counterpart. As
a → ∞, we find

j0iα ¼
1

N 0
Y∞
n¼1

exp

�
−
1

n
C†
n · C̃†

n

�
j0ic: ð30Þ

Boundary states and null string complementarity.—A
tensile closed string field Xðσ; τÞ, which maps the world-
sheet to spacetime, is given by a mode expansion analogous
to Eq. (4). D-branes arise as boundary states on the closed
string worldsheet conformal field theory. For a boundary
located at τ ¼ 0 on the worldsheet, the possibilities are [13]

N∶ ∂σXðσ; τÞjB1i ¼ 0≡ ðαn þ α̃−nÞjB1i ¼ 0; ð31aÞ

D∶ ∂τXðσ; τÞjB2i ¼ 0≡ ðαn − α̃−nÞjB2i ¼ 0; ð31bÞ

where N and D stand for the Neumann and Dirichlet
conditions, respectively. This can be solved explicitly to
obtain

N∶ jB1i ¼ N 1

Y∞
n¼1

exp

�
−
α†n · α̃

†
n

n

�
j0iα; ð32aÞ

D∶ jB2i ¼ N 2

Y∞
n¼1

exp
�
α†n · α̃

†
n

n

�
j0iα: ð32bÞ

We see that in terms of α oscillators and the α vacuum (29),
j0ic is a Dirichlet boundary state in all directions, while in
terms of the C oscillators and the C vacuum (30), j0iα is a
Neumann boundary state (again in all directions). Thus, an
open string description emerges from the closed string
vacuum as the tension goes to zero. This can be further
clarified by looking at the oscillators. Using Eq. (21), the
conditions for the C vacuum (22) translate into

�� ffiffiffi
ϵ

p þ 1ffiffiffi
ϵ

p
�
αμn
2
þ
� ffiffiffi

ϵ
p

−
1ffiffiffi
ϵ

p
�
α̃μ−n
2

�
j0ic ¼ 0:

In the strict limit ϵ → 0, we end up with

ðαμn − α̃μ−nÞj0ic ¼ 0: ð33Þ

In terms of the usual string vacuum j0iα, this zero tension
ground state j0ic is thus a D instanton, which is a Dirichlet
boundary state in all spacetime directions [14]. An analo-
gous calculation yields

ðCμ
n þ C̃μ

−nÞj0iα ¼ 0: ð34Þ

Thus, from the point of view of the C observer, the tensile
string vacuum develops into a D-25 brane.
We now physically describe this process, the one we will

call the null string complementarity. For an observer in
tensile string theory with vacuum j0iα looking at strings
with decreasing tension, the completely tensionless string
appears as a spacetime point, a D instanton. There is a
complementary point of view of accelerated vacua looking
at j0iα vacuum. To the observers in this continuous one-
parameter family of vacua, the usual closed string looks
more and more distorted, and ultimately the tensionless
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observer looking at the usual string sees a space-filling
D-25 brane [15]. This is a closed to open string transition.
The complementary picture of the formation of the D
instanton fits in rather wonderfully with Rindler world-
sheets. This is a “dual” picture of the formation of an open
string from a closed string in the tensionless limit, as seen
by an observer sitting in the α vacuum.
We pictorially depict the above process in Fig. 2. The

“inertial” closed string worldsheet is the cylinder on the
extreme left with acceleration a ¼ 0. For increasing accel-
erations ai ða1 < a2 < a3Þ, the worldsheet can be given by
increasingly distorted hyperboloids. Ultimately, at a → ∞,
the worldsheet becomes the light cone. The boundary states
in Eq. (31) are defined at τ ¼ 0; hence, to understand their
formation, we consider the τ ¼ 0 cross sections depicted at
the bottom of Fig. 2. Increasingly accelerated worldsheets
result in circles of lower and lower radius, until at a → ∞,
we get a point. This spacetime point is what is the D
instanton described above mathematically. The comple-
mentary picture is that when viewed from the j0ic, j0iα
becomes a longer and longer string, gradually filling up all
of spacetime to form a D-25 brane when the tension goes to
zero [15].
Reaching the Rindler horizon II.—Finally, we discuss

reaching the Rindler horizon at constant acceleration by
evolving in time. We are interested in Rindler time. So this
is a limit η → ∞. We will equivalently view this as

η → η; ξ → ϵξ; ϵ → 0: ð35Þ

To understand this limit, we rewrite the 2D conformal
generators in Rindler spacetime (we put a ¼ 1):

Ln; L̄n ¼ � in

2
enðξ−ηÞð∂η ∓ ∂ξÞ: ð36Þ

In the limit ϵ → 0, we get

Ln ¼ Ln − L̄−n ¼ ine−nηð∂η − nξ∂ξÞ;
Mn ¼ ϵðLn þ L̄−nÞ ¼ −ine−nη∂ξ: ð37Þ

This closes to form the classical part of the BMS algebra
(11) (i.e., cL ¼ cM ¼ 0), as expected. This is again thus the
null string, which we had expected. A detailed analysis of
the aspects of Rindler physics on constant accelerated
worldsheets will be presented elsewhere [16].
We now present a particularly intriguing picture that

arises naturally on constant acceleration worldsheets.
Notice that in Rindler spacetime, as depicted in Fig. 1,
constant Rindler time (η) slices are straight lines through
the origin with increasing slope on the Rindler R wedge
depicted by ηi (η1 < η2 < η3). At η → ∞, this hits the light
cone. On the L wedge, however, time runs backward, and
the same slices are obtained by continuing R-wedge lines
backward into the third quadrant. For the string worldsheet
at constant acceleration, the analogous picture is Fig. 3.
Increasing η planes intersect the constant hyperboloid at
increasing angles. The η evolution of the closed string is
shown in the boxes below. The circular closed string at the
initial η ¼ 0 slice gets deformed as η evolves. The tension
decreases, and the string gets longer and longer as given by
the ellipses of increasing eccentricity. Ultimately, when
η → ∞, the light cone is hit, and the cross section becomes
a straight line (an ellipse with eccentricity ¼ 1). The BMS

FIG. 1. Equal time slices in Rindler spacetimes.

FIG. 2. Increasing accelerated worldsheets.

FIG. 3. Equal time slices of a Rindler worldsheet.
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algebra appears on the worldsheet as shown above. The
string becomes tensionless and transitions into an open
string from a closed one.
Conclusions.—In summary, we have shown that Rindler

physics on the worldsheet of the string captures many
intriguing aspects of the tensionless string, including the
emergence of open strings from closed strings and the
remarkable null string complementarity. Our results would
be particularly interesting for studies of strings near black
holes where the near-horizon Rindler spacetime would
induce a Rindler structure on the worldsheet. It has been
speculated that strings grow long and hence become
tensionless near black hole horizons [17]. We have pro-
vided the tools for understanding this phenomenon from
the worldsheet in this work. Details on this, as well as
connections to thermal physics and entanglement on the
worldsheet, will be elaborated in Ref. [16]. Finally, the
Carrollian limit (19) of the Virasoro algebra and the
Galilean limit result in the same BMS algebra [6]. From
the string theory perspective, this hints at a duality between
the extreme stringy limit and the supergravity regime of
string theory. There are some interesting hints of this
Galilean-Carrollian duality even in the Rindler story we
have initiated here and we will expand on this in Ref. [16].
It will also be fascinating to link this to torsional Newton-
Cartan string theory [18,19], which exhibits the same
algebra on the worldsheet.
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