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In this study, we investigate out-of-time-order correlators (OTOCs) in systems with power-law decaying
interactions such as R−α, where R is the distance. In such systems, the fast scrambling of quantum
information or the exponential growth of information propagation can potentially occur according to the
decay rate α. In this regard, a crucial open challenge is to identify the optimal condition for α such that fast
scrambling cannot occur. In this study, we disprove fast scrambling in generic long-range interacting
systems with α > D (D: spatial dimension), where the total energy is extensive in terms of system size and
the thermodynamic limit is well defined. We rigorously demonstrate that the OTOC shows a polynomial
growth over time as long as α > D and the necessary scrambling time over a distance R is larger than
t ≳ R½ð2α−2DÞ=ð2α−Dþ1Þ�.
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Introduction.—Information scrambling, which charac-
terizes the inaccessibility of local information after time
evolution, is a central research topic in interdisciplinary
problems ranging from thermalization in quantum many-
body systems [1–4] to the black hole information problem
[5–7]. In the recent developments on the connection
between quantum chaos and information theory, out-of-
time-order correlators (OTOCs) were found to be a useful
quantitative tool for characterizing information scrambling
[8–11].
For quantum lattice models, the OTOC has the form [11]

CðR; tÞ ≔ 1

trð1̂Þ trð½WiðtÞ; Vi0 �†½WiðtÞ; Vi0 �Þ; ð1Þ

where WiðtÞ ¼ eiHtWie−iHt, H denotes the system
Hamiltonian, and the operators Wi and Vi0 are defined
on the sites i and i0, respectively; they are separated from
each other by a distance R. When the Hamiltonian H
includes only short-range interactions, the OTOC grows as
CðR; tÞ ∝ eλLðt−R=vBÞ, where λL and vB are referred to as
quantum analogs of the Lyapunov exponent [10] and the
butterfly speed [12], respectively. On the butterfly speed
vB, the Lieb-Robinson bound [13–15] yields the simplest
upper bound for generic quantum many-body systems. The
exploration of the universal behaviors of the OTOC has
been one of the most fascinating and essential topics in
modern physics [16–26]. Moreover, along with theoretical
developments, the experimental observations of the OTOC
have been proposed and realized in various setups [27–32].

When the Hamiltonian consists of only short-range
interactions, the OTOC exhibits a ballistic spreading
of the wavefront with a butterfly speed vB [12,33–39].
However, when the Hamiltonian includes long-range (or
power-law decaying) interactions proportional to R−α with
the distance R between two particles, the wavefront can
spread superlinearly with time [40–52]. From the analogy
of the short-range interacting systems, the following
exponential growth of the OTOC may be inferred:

CðR; tÞ ∝ eλLt=Rα: ð2Þ

It results in the so-called fast scramblingwhich implies that
local quantum information is spread over the entire regime
of the system with a timescale of ts ≈ logðnÞ=λL, where n is
the system size. Indeed, the well-known Lieb-Robinson
bound [53,54] for long-range interacting systems gives the
upper bound in the form of Eq. (2). Recent studies have
focused on the universal laws of fast scrambling, specifi-
cally in the context of black hole physics [7,55,56]. Starting
with the exact solution of the Sachdev-Ye-Kitaev model
[9,57], intensive studies have been conducted to determine
the types of quantum many-body systems that permit or
prohibit the fast scrambling [58–68].
Fast scrambling implies that a system can relax arbi-

trarily fast under a local perturbation, whereas it is difficult
to imagine that such extremely fast information propaga-
tion usually occurs in nature. Systems with very large α are
categorized as short-range systems, and hence, the OTOC
cannot be described accurately for the entire regime of α by
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Eq. (2). Indeed, a more accurate description of the OTOC
for long-range interacting systems may lead to the follow-
ing polynomial growth [69–80] instead of an exponential
growth (2):

CðR; tÞ ≤ ðλLt=RζÞα̃; ð3Þ

where ζ ≤ 1 and ζα̃ ≤ α. This inequality yields scrambling
time that is algebraic with respect to the system size,
i.e., ≈nζ=D=λL. For sufficiently large α, several numerical
[69–72,81] and theoretical [73–80] studies indicate poly-
nomial growth.
From the above background, the following fundamental

question naturally arises: what is the optimal condition for
α to prohibit the fast scrambling of the OTOC given in
Eq. (2)? Because numerical calculations have already
indicated that polynomial growth of the OTOC might
break down for α ≤ D [70,72], we expect that the condition
α > D is at least necessary. Moreover, this condition
defines natural long-range interacting systems that are
thermodynamically stable such that the total energy is
extensive with regard to the system size and the thermo-
dynamic limit is well defined [82,83].
In previous studies, theoretical analyses have been

mostly limited to the regime of α > 2D [73–80]. For
α > 2D, Foss-Feig et al. proved that ζ in Eq. (3) is
lower-bounded by ½ðα − 2DÞ=ðα −Dþ 1Þ� [73], which
was improved to ½ðα − 2DÞ=ðα −DÞ� in Refs. [76,77].
Furthermore, for α > 2Dþ 1, even the existence of the
finite butterfly speed (i.e., ζ ¼ 1) has been proven in
generic long-range interacting systems [78–80]. The
sequence of these achievements has demonstrated that fast
scrambling (2) is prohibited in long-range interacting
systems when α is above a threshold, i.e., α ¼ 2D.
In contrast, fast scrambling conditions in regimes ofD <

α ≤ 2D are highly elusive. In this regime, a sub-exponen-
tial speed of the quantum-state-transfer is in principle
possible by a clever protocol employing quantum many-
body long-range interactions [84]. In addition, when
exponent α approaches D, the effective system dimensions
become infinitely large, and hence different physics can
appear. For example, various studies on one-dimensional
systems have shown that the long-range interactions can
qualitatively change the fundamental physical properties
for α ≤ 2 both in static [85–89] and dynamical phases
[90,91]. Therefore, physics induced by long-range inter-
actions in this regime is quite nontrivial and can yield
unexpected consequences. Nevertheless, various observa-
tions have indicated the prohibition of fast scrambling in
this regime. As a partial solution, Tran et al. have disproved
fast scrambling for a condition α > 3=2 in one dimen-
sion [79].
In the present Letter, we prove that under the condition

α > D fast scrambling is prohibited in arbitrary long-
range interacting systems. Thus, by combining the

counterexamples for α ≤ D [70,72], we identify α > D
as the optimal condition for the polynomial growth (3) of
the OTOC (see also Ref. [92]). As a general upper bound,
we derive the polynomial growth of the OTOC with
exponent ζ expressed as ζ ¼ ½ð2α − 2DÞ=ð2α −Dþ 1Þ�.
Our analyses consist of the following two parts: (i) A
simple connection technique for the unitary time operators
for small times, which is utilized in Ref. [93] and (ii) the
Lieb-Robinson bound for short-time evolution. Using these
techniques, we can not only prove our main result, but also
develop a considerably simple proof for the state-of-
the-art Lieb-Robinson bound for 2D < α ≤ 2Dþ 1 in
Refs. [76,77]. Our result verifies the empirical hypothesis
that thermodynamically natural class of long-range inter-
actions cannot induce fast scrambling.
Setup and main result.—Let us consider a quantum spin

system with n spins, where each spin is located on one
vertex of the D-dimensional graph (or D-dimensional
lattice) with Λ of the total spin set, i.e., jΛj ¼ n. For
simplicity, we consider (1=2)-spin systems; however, the
extension to a general finite spin dimension d is
straightforward. For a partial set X ⊆ Λ, we denote the
cardinality, i.e., the number of vertices contained in X, by
jXj (e.g., X ¼ fi1; i2;…; ijXjg). Further, we denote the
complementary subset of X as Xc ≔ ΛnX. For two
arbitrary spins i and i0, we define distance di;i0 as the
shortest path length on the lattice that connects i and i0.
We define i½r� as the ball region with radius r from site i
(Fig. 1).

i½r� ≔ fi0 ∈ Λjdi;i0 ≤ rg; ð4Þ

where i½0� ¼ i and r is an arbitrary positive integer.
We consider a general system having at most k-body

long-range interactions with finite k. For example, we give
the Hamiltonian with k ¼ 2, which is described as

FIG. 1. The OTOC (1) roughly determines the spreading of
local operator Wi by time evolution. We aim to approximate
WiðtÞ in a local region i½r�, which has a maximum distance of r
from site i [Eq. (4)]: If operator WiðtÞ is well approximated by
using WðtÞ

i½r� as long as t≲OðrζÞ (ζ < 1), the OTOC exhibits
polynomial growth, as in Eq. (3), because of Eq. (7).
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H ¼
X
i<i0

hi;i0 þ
Xn
i¼1

hi; khi;i0 k ≤
J0

ðdi;i0 þ 1Þα ; ð5Þ

for ∀ i, i0 ∈ Λ, where fhi;i0gi<i0 are interaction operators
acting on the spins fi; i0g, and k � � � k is the operator norm.
One of the simple examples is the long-range transverse
Ising model, which has a form of Eq. (5) by choosing
hi;i0 ¼ Jσxi σ

x
i0=d

α
i;i0 and hi ¼ Bσzi . Such long-range inter-

actions have been realized in various experimental setups
such as atomic, molecular, and optical systems [94–107]. In
this Letter, we are in particular interested in the regime of
D < α ≤ 2D, which is also experimentally important as it
includes several realistic long-range interactions, such as
dipole-dipole interactions (D ¼ 2, α ¼ 3) and van der
Waals interactions (D ¼ 3, α ¼ 6).
In our analyses, we focus on time evolution by the

Hamiltonian H. A key strategy for estimating the OTOC is
using the local approximation of the time-evolved operator
WiðtÞ ≔ eiHtWie−iHt (Fig. 1). We approximate the operator
WiðtÞ using another operator WðtÞ

i½r� which is supported on
the local subset i½r�. The error of this approximation is
estimated by

kWiðtÞ −WðtÞ
i½r�kp; ð6Þ

where k � � � kp is the Schatten-p norm, which is defined as
kOkp ≔ ½trðO†OÞp=2�1=p. For p ¼ ∞, the Schatten norm
k � � � k∞ corresponds to the standard operator norm, while
the case of p ¼ 2 corresponds to the Frobenius norm,
which is of interest. For an arbitrary operator Vi0 with
di;i0 ¼ R and kVi0 k ¼ 1, one can easily show

CðR; tÞ ≤ 4kWiðtÞ −WðtÞ
i½R−1�k2F; ð7Þ

where we define the normalized Frobenius norm k � � � kF ≔
k � � � k2=½trð1̂Þ�1=2 and use ½WðtÞ

i½R−1�; Vi0 � ¼ 0 for di;i0 ¼ R.
Our main result provides the efficiency guarantee for the

local approximation of a time-evolved operatorWiðtÞ in the
region i½r� (see Supplemental Material [108], Sec. S.II for
more details).
Theorem 1.—Let us consider Hamiltonians with few-

body interactions and power-law decay exponent α > D.
Then, for an arbitrary operator Wi (kWik ¼ 1) and the
corresponding time evolution of WiðtÞ, there exists an
operator WðtÞ

i½r� that approximates WiðtÞ on a region i½r� as

kWiðtÞ −WðtÞ
i½r�kF ≤ Cr−αþDtα−½ðD−1Þ=2�; ð8Þ

where C is an Oð1Þ constant.
From the inequalities in Eqs. (7) and (8), we obtain the

upper bound of the OTOC as

CðR; tÞ ≲
�

C0t

R
2α−2D
2α−Dþ1

�
α−½ðD−1Þ=2�

;

where C0 is a constant of Oð1Þ. This gives the polynomial
growth in Eq. (3) with ζ ¼ ½ð2α − 2DÞ=ð2α −Dþ 1Þ�
and α̃ ¼ α − ðD − 1Þ=2.
In the above theorem, we consider an on-site operator

Wi; however, the theorem can be generalized to an operator
WX supported on an arbitrary subset X ⊂ Λ. Let us consider
the case where the subset X satisfies X ⊆ i½r0� for particular
choices of i and r0. Then, for WXðtÞ, we obtain an
inequality that is similar to Eq. (8) as

kWXðtÞ −WðtÞ
i½r0þr�kF ≤

Ctα−½ðD−1Þ=2�ðrþ r0Þ½ðD−1Þ=2�

rα−½ðDþ1Þ=2� :

For D ¼ 1, the above inequality reduces to

kWXðtÞ −WðtÞ
i½r0þr�kF ≤

Ctα

rα−1
:

Concept of the proof.—A central technique in our proof
is the connection of unitary time evolutions addressed in
Ref. [93] (Fig. 2). Following Ref. [93], we decompose the
time to mt pieces, and we define tm ≔ mΔt and tmt

≔ t
where Δt ¼ t=mt. We assume Δt as a small constant. For
fixed r and i ∈ Λ, we define lengths Δr, rm, and subset Xm
as

Δr ≔ r=mt; Xm ≔ i½mΔr�: ð9Þ

Using these notations, we approximateWiðtmÞwith another
operator supported on subset Xm.
For the approximation, we adopt the following recursive

procedure. For m ¼ 1, we define operator Wð1Þ
X1

as an
approximation of WiðΔtÞ onto the subset X1:

FIG. 2. We decompose time t and length r tomt pieces, namely,
Δt ≔ t=mt and Δr ≔ r=mt. We start from time evolutionWiðΔtÞ
and approximate it by Wð1Þ

X1
, which is supported on an extended

region X1 as in Eq. (9). Then, we iteratively approximate
WðmÞ

Xm
ðΔtÞ by Wðmþ1Þ

Xmþ1
, which finally yields the approximation

(12). The main advantage of this method is that we need to
estimate the local approximation of the time-evolved operators
only for a short time.
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Wð1Þ
X1

≔ WiðΔt; X1Þ;

where we define notation Wiðt; X1Þ as

Wiðt; X1Þ ≔
1

trXc
1
ð1̂Þ trXc

1
½WiðtÞ� ⊗ 1̂Xc

1
: ð10Þ

Note that WiðΔt; X1Þ is now supported on subset X1. For
m ¼ 2, we adopt the second-step approximation
Wð2Þ

X2
≔ Wð1Þ

X1
ðΔt; X2Þ, which is similar to Eq. (10). We

then obtain the approximation error as

kWið2ΔtÞ −Wð2Þ
X2
kp

≤ kWið2ΔtÞ −Wð1Þ
X1
ðΔtÞ þWð1Þ

X1
ðΔtÞ −Wð2Þ

X2
kp

≤ kWiðΔtÞ −Wð1Þ
X1
kp þ kWð1Þ

X1
ðΔtÞ −Wð2Þ

X2
kp; ð11Þ

with Wð1Þ
X1
ðΔtÞ ≔ eiHΔtWð1Þ

X1
e−iHΔt, where we use the tri-

angle inequality and unitary invariance for the Schatten-
p norm.
By repeating this procedure, we define operator WðmÞ

Xm

recursively as WðmÞ
Xm

¼ Wðm−1Þ
Xm−1

ðΔt; XmÞ. Then, similar to
Eq. (11), we obtain the following inequality:

kWiðmtΔtÞ −WðmtÞ
Xmt

kp ≤
Xmt−1

m¼0

kWðmÞ
Xm

ðΔtÞ −Wðmþ1Þ
Xmþ1

kp;

ð12Þ

where we define Wð0Þ
X0

≔ Wi. The problem now reduces to
estimating the approximation error of kWðmÞ

Xm
ðΔtÞ −

Wðmþ1Þ
Xmþ1

kp only for short-time evolution, which is a critical
point to derive our main results.
As the simplest exercise, let us consider the case with

p ¼ ∞, which provides the standard operator norm. The
resulting wavefront shape for information propagation is
the same as that obtained in Refs. [76,77]; however, our
derivation is considerably simpler and can be applied to a
more general class of Hamiltonians. For the short-time
evolution, we can utilize the well-known simple Lieb-
Robinson bound as in Refs. [53,54]. Using their results, we
can readily derive the following approximation error (see
Supplemental Material [108], Sec. S.III A for the deriva-
tion):

kWðmÞ
Xm

ðΔtÞ −Wðmþ1Þ
Xmþ1

k∞ ≤ cj∂Xmjec0ΔtðΔrÞ−αþDþ1; ð13Þ

where c and c0 are the constants of Oð1Þ, which depend on
only the details of the system. Note that ∂Xm is the surface
region of subset Xm. For a sufficiently large Δt, the bound
(13) eventually yields an exponential growth; however, Δt
is now selected to be as small as Oð1Þ, and hence, ec

0Δt is
given by a constant.

Thus, by introducing geometric parameter γ that yields
j∂Xmj ≤ j∂i½r�j ≤ γrD−1, we obtain

kWðmÞ
Xm

ðΔtÞ −Wðmþ1Þ
Xmþ1

k∞ ≤ c̃r2D−αtα−D−1;

where c̃ ≔ cγec
0ΔtðΔtÞ−αþDþ1, and we use Δr ¼ Δtðr=tÞ.

Therefore, we reduce the upper bound in Eq. (12) to

kWiðtÞ −WðmtÞ
i½r� k∞ ≤ c̃0r2D−αtα−D; ð14Þ

where c̃0 ≔ c̃=Δt, and we use mt ¼ t=Δt. The time step,
Δt, is selected as an Oð1Þ constant, and hence, c̃0 is also
an Oð1Þ constant. Using the upper bound, information
propagation is restricted to a region with diameter
R ≈ jtj½ðα−DÞ=ðα−2DÞ�, which is the same as the state-of-
the-art estimation obtained in Refs. [76,77], namely, the
improved version of Refs. [73–75]. Note that the result
above is more general; we do not have to assume the few-
body interactions of the Hamiltonian in deriving Eq. (13)
because the upper bound in Eq. (13) is applied to the
Hamiltonians without the assumption of few-body inter-
actions (see Ref. [53], Assumption 2.1).
Finally, we explain why the condition of α > 2D appears

instead of α > D to obtain a meaningful upper bound. This
condition originated from coefficient j∂Xmj in Eq. (13).
When we consider the time evolution of an operator
supported on subset X ⊂ Λ (e.g., OX), the Lieb-
Robinson bound unavoidably includes the subset depend-
ence [13–15]. This subset dependence is the primary
obstacle that resists the rigorous proof of the polynomial
growth of the information propagation for α < 2D. In the
case where the Frobenius norm (p ¼ 2) is considered, this
subset dependence is significantly improved, as shown in
Eq. (15). This provides a breakthrough in deriving the
strictest condition, namely, α > D, for the polynomial
growth of the OTOC.
Proof of Theorem 1 (Case with p ¼ 2 and α > D).—For

proving our main theorem, we start from the inequality in
Eq. (12). Thus, our task is to derive a local approximation
for short-time evolution. Here, let OX be an arbitrary
operator on subset X with kOXk ¼ 1. We aim to approxi-
mate OXðtÞ by OXðt; X½r�Þ, where X½r� is an extended
subset defined as X½r� ≔ ⋃i∈Xi½r�. The key technical
ingredient is the following inequality for short-time evo-
lution in terms of the Frobenius norm (see the
Supplemental Material [108], Theorem 3)

kOXðtÞ −OXðt; X½r�ÞkF ≤ c0jtj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j∂X½r�j · r−2αþDþ1

q
; ð15Þ

with c0 as an Oð1Þ constant, where ∂X½r� is the surface
region of X½r�, and time t is assumed to be smaller than a
certain threshold. Most parts of the proof are dedicated to
deriving Eq. (15), as shown in the Supplemental Material
[108], Secs. S.IV and S.V.
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With the inequality in Eq. (15), we can easily prove the
main Theorem 1 in the same manner as that used for
deriving Eq. (14) for p ¼ ∞. Here, Δt is sufficiently small
such that the inequality (15) holds. Applying inequality
(15) to Eq. (12), we obtain

kWðmÞ
Xm

ðΔtÞ −Wðmþ1Þ
Xmþ1

kF ≤ c̃0r−αþDtα−½ðDþ1Þ=2�;

with c̃0 being an Oð1Þ constant, where we use

Wðmþ1Þ
Xmþ1

¼WðmÞ
Xm

ðΔt;Xm½Δr�Þ and j∂ðXm½Δr�Þj≤ j∂ði½2r�Þj≤
γð2rÞD−1. The above inequality reduces inequality in
Eq. (15) to the main inequality given in Eq. (8) using mt ≔
t=Δt as

kWiðtÞ −WðmtÞ
i½r� kF ≤ ðc̃0=ΔtÞr−αþDtα−½ðD−1Þ=2�:

This completes the proof of Theorem 1.□
Conclusion.—In this work, we investigated the poly-

nomial growth of the OTOC represented in Eq. (3) for all
long-range interacting systems with α > D, where the
existence of a well-defined thermodynamic limit is ensured.
We comprehensively disproved fast scrambling in this
natural class of long-range interactions. Our results indicate
the lower bound of the scrambling time as nζ=D

with ζ ¼ ½ð2α − 2DÞ=ð2α −Dþ 1Þ�.
This study has two future directions. First, our condition

of α > D for the polynomial growth of the OTOC is
expected to be qualitatively tight; however, the quantitative
estimation of ζ still has scope for improvement. In
particular, it is an intriguing problem to identify the critical
value of αc above which the ballistic propagation of
information scrambling (i.e., ζ ¼ 1) is ensured. For the
operator norm [i.e., p ¼ ∞ in Eq. (6)], the critical αc is
proven to be equal to 2Dþ 1 [78–80]. For the Frobenius
norm, it has been conjectured that the critical αc is equal to
3D=2þ 1, where the case ofD ¼ 1 has been indeed proved
[79]. We hope that our current analysis will be further
refined to identify the optimal value of ζ in the future.
Second, we considered the most common form of the

OTOC in Eq. (1), which adopts the average for a uniformly
mixed state. In experimental application, if we would be
able to prepare the uniform mixed state as the initial state,
Theorem 1 appropriately predicts the growth of the OTOC.
On the other hand, if the initial state is prepared as a finite
temperature result, we need to consider the following
generalization for a finite-temperature state:

Cβðx; tÞ ≔
1

trðe−βHÞ trðe
−βH½WiðtÞ; Vi0 �†½WiðtÞ; Vi0 �Þ:

The inequality in Eq. (12) is applied to this case, and we
expect that the same polynomial growth can be obtained
above a temperature threshold by using the cluster expan-
sion technique [111,112].

Finally, throughout the Letter, we consider the
Hamiltonian dynamics e−iHt. It is an intriguing to extend
our result to Markovian quantum dynamics [113,114]. If
the uniform mixed state is a steady state, our formalism in
Eq. (12) is applied and we expect to derive a similar upper
bound for the OTOC.
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