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Adaptive networks change their connectivity with time, depending on their dynamical state. While
synchronization in structurally static networks has been studied extensively, this problem is much more
challenging for adaptive networks. In this Letter, we develop the master stability approach for a large class
of adaptive networks. This approach allows for reducing the synchronization problem for adaptive
networks to a low-dimensional system, by decoupling topological and dynamical properties. We show how
the interplay between adaptivity and network structure gives rise to the formation of stability islands.
Moreover, we report a desynchronization transition and the emergence of complex partial synchronization
patterns induced by an increasing overall coupling strength. We illustrate our findings using adaptive
networks of coupled phase oscillators and FitzHugh-Nagumo neurons with synaptic plasticity.
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In nature and technology, complex networks serve as a
ubiquitous paradigm with a broad range of applications
from physics, chemistry, biology, neuroscience, socio-
economic, and other systems [1]. Dynamical networks
are composed of interacting dynamical units, such as, e.g.,
neurons or lasers. Collective behavior in dynamical net-
works has attracted much attention over the last decades.
Depending on the network and the specific dynamical
system, various synchronization patterns of increasing
complexity were explored [2–5]. Even in simple models
of coupled oscillators, patterns such as complete synchro-
nization [6], cluster synchronization [7–11], and various
forms of partial synchronization have been found, such as
frequency clusters [12], solitary [13], or chimera states
[14–22]. In brain networks, particularly, synchronization
is believed to play a crucial role: for instance, under
normal conditions in the context of cognition and learning
[23,24] and under pathological conditions, such as
Parkinson’s disease [25], epilepsy [26–30], tinnitus
[31,32], and schizophrenia, to name a few [33]. Also in
power grid networks, synchronization is essential for the
stable operation [34–37].
The powerful methodology of the master stability

function [38] has been a milestone for the analysis of
synchronization phenomena. This method allows for sepa-
rating dynamical from structural features for a given
dynamical network. It drastically simplifies the problem
by reducing the dimension and unifying the synchroniza-
tion study for different networks. Since its introduction, the
master stability approach has been extended and refined
for multilayer [39], multiplex [40,41], and hypernetworks
[42,43], to account for single and distributed delays

[44–49], and to describe the stability of clustered states
[50–53]. The master stability function has been used to
understand effects in temporal [54,55] as well as adaptive
networks [56] within a static formalism. Beyond the local
stability described by the master stability function, Belykh
et al. have developed the connection graph stability method
to provide analytic bounds for the global asymptotic
stability of synchronized states [57–60]. Despite the
apparent vivid interest in the stability features of synchro-
nous states on complex networks, only little is known about
the effects induced by an adaptive network structure. This
lack of knowledge is even more surprising regarding how
important adaptive networks are for the modeling of real-
world systems.
Adaptive networks are commonly used models for

synaptic plasticity [61–66], which determines learning,
memory, and development in neural circuits. Moreover,
adaptive networks have been reported for chemical [67,68],
epidemic [69], biological [70], transport [71], and social
systems [72,73]. A paradigmatic example of adaptively
coupled phase oscillators has recently attracted much
attention [12,41,74–81], and it appears to be useful for
predicting and describing phenomena in more realistic and
detailed models [82–85]. Systems of phase oscillators are
important for understanding synchronization phenomena in
a wide range of applications [86–88].
In this Letter, we report on a surprising desynchroniza-

tion transition induced by an adaptive network structure.
We find various parameter regimes of partial synchroniza-
tion during the transition from the synchronized to an
incoherent state. The partial synchronization phenomena
include multifrequency-cluster and chimeralike states.
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By going beyond the static network paradigm, we develop
a master stability approach for networks with adaptive
coupling. We show how the adaptivity of the network gives
rise to the emergence of stability islands in the master
stability function that result in the desynchronization
transition. With this, we establish a general framework
to study those transitions for a wide range of dynamical
systems. In order to provide analytic insights, we use the
generalized Kuramoto-Sakaguchi system on an adaptive
and complex network. Finally, we show that our findings
also hold for a more realistic neuronal setup of coupled
FitzHugh-Nagumo neurons with synaptic plasticity.
We consider the following general class of N adaptively

coupled systems [12,41,74–80,89]:

_xi ¼ fðxiÞ − σ
XN

j¼1

aijκijgðxi; xjÞ; ð1Þ

_κij ¼ −ϵ½κij þ aijhðxi − xjÞ�; ð2Þ

where xi ∈ Rd, i ¼ 1;…; N, is the d-dimensional dynami-
cal variable of the ith node, fðxiÞ describes the local
dynamics of each node, and gðxi; xjÞ is the coupling
function. The coupling is weighted by scalar variables κij,
which are adapted dynamically according to Eq. (2) with the
nonlinear adaptation function hðxi − xjÞ. We assume that the
adaptation depends on the difference of the corresponding
dynamical variables, similar to the neuronal spike timing-
dependent plasticity [62,63,90,91]. The base connectivity
structure is given by the matrix elements aij ∈ f0; 1g of the
N × N adjacency matrix A, which possesses a constant row
sum r, i.e., r ¼ P

N
j¼1 aij for all i ¼ 1;…; N. The

assumption of the constant row sum is necessary to allow
for synchronization. The Laplacian matrix is L ¼ rIN − A
where IN is the N-dimensional identity matrix. The eigen-
values of L are called Laplacian eigenvalues of the network.
The parameter σ > 0 defines the overall coupling strength,
and ϵ > 0 is a timescale separation parameter. In particular,
if the adaptation is slower than the local dynamics, the
parameter ϵ is small.
Complete synchronization is defined by the N − 1

constraints x1 ¼ x2 ¼ � � � ¼ xN . Denoting the synchroni-
zation state by xiðtÞ ¼ sðtÞ and κij ¼ κsij, we obtain from
Eqs. (1) and (2) the following equations for sðtÞ and κsij:

_s ¼ fðsÞ þ σrhð0Þgðs; sÞ; ð3Þ

κsij ¼ −aijhð0Þ: ð4Þ

In particular, we see that sðtÞ satisfies the dynamical
equation (3), and κsij are either −hð0Þ or zero, if the
corresponding link in the base connectivity structure exists
(aij ¼ 1) or not (aij ¼ 0), respectively.
To describe the local stability of the synchronous state,

we introduce the variations ξi ¼ xi − s and χij ¼ κij − κsij.

The linearized equations for these variations can be written
in a matrix form

�
_ξ

_χ

�
¼

�
S −σB ⊗ gðs; sÞ

−ϵC ⊗ Dhð0Þ −ϵIN2

��
ξ

χ

�
; ð5Þ

where ξ ¼ ðξT1 ;…; ξTNÞT , χ ¼ ðχ11; χ12;…; χNNÞT are Nd-
and N2-dimensional vectors, respectively,

S ¼ IN ⊗ DfðsÞ
þ σhð0Þ½rIN ⊗ D1gðs; sÞ þ A ⊗ D2gðs; sÞ�;

Df and Dh are the Jacobians (d × d matrix and 1 × d
matrix, respectively), D1g and D2g are the Jacobians with
respect to the first and the second variable, respectively, and
the constant matrices B (N × N2) and C (N2 × N) are given
in [92].
System (5) is used to calculate the Lyapunov exponents

of the synchronous state; it possesses very high dimension
N2 þ Nd. However, the Jacobian matrix in (5) is sparse
with a large N2 × N2 block given by the simple diagonal
matrix −ϵIN2 . This implies that (5) possesses N2 − N stable
directions with Lyapunov exponents −ϵ. To find these
directions, we substitute ðξ; ηÞ ¼ e−ϵtðξ0; η0Þ into (5) and
obtain the linear system

�
Sþ ϵINd −σB ⊗ gðs; sÞ

−ϵC ⊗ Dhð0Þ 0

��
ξ0
χ 0

�
¼ 0: ð6Þ

This system possesses at least N2 − N linearly independent
solutions, since the matrix in (6) is degenerate due to the
large zero block [92].
Such a structure of the invariant subspaces in system (5)

allows for introducing new coordinates, which separate the
N2 − N stable directions from the remaining Nðdþ 1Þ
directions. With these new coordinates, we reduce the
system’s dimension significantly. Moreover, as in the
classical master stability approach, we diagonalize
the Nðdþ 1Þ-dimensional master system into blocks of
dþ 1 dimensions. Hence, the dynamics in each block is
described by the new coordinates ζ and κ, which are d- and
one-dimensional dynamical variables, respectively. For
further details and the proof of the master stability function,
we refer the reader to the Supplemental Material [92]. Our
analysis shows that the coupling structure enters just as a
complex parameter μ, the network’s Laplacian eigenvalue.
As a result, the stability problem is reduced to the largest

Lyapunov exponent ΛðμÞ, depending on a complex param-
eter μ, for the following system:

_ζ ¼
�
DfðsÞ þ σrhð0Þ

�
D1gðs; sÞ

þ
�
1 −

μ

r

�
D2gðs; sÞ

��
ζ − σgðs; sÞκ; ð7Þ
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_κ ¼ −ϵ½μDhð0Þζ þ κ�: ð8Þ

The function ΛðμÞ is called master stability function. Note
that the first bracketed term in ζ of (7) resembles the master
stability approach for static networks, which, in this case, is
equipped by an additional interaction representing the
adaptation. Furthermore, the shape of the master stability
function depends on the choice of σ and r explicitly. In case
of diffusive coupling, i.e., gðx; yÞ ¼ gðx − yÞ, the master
stability function can be expressed as ΛðσμÞ such that the
shape of Λ scales linearly with the coupling constant σ.
To obtain analytic insights into the stability features of

synchronous states that are induced by an adaptive
coupling structure, we consider the following model of
N adaptively coupled phase oscillators [12,76]:

_ϕi ¼ ω − σ
XN

j¼1

aijκij sinðϕi − ϕj þ αÞ; ð9Þ

_κij ¼ −ϵ½κij þ aij sinðϕi − ϕj þ βÞ�; ð10Þ

where ϕi represents the phase of the ith oscillator, ω is its
natural frequency, which we set to zero in a rotating frame.
The phase-lag α can be regarded as propagation delay in the
context of neuronal systems [93].
The synchronous state of (9) and (10) is given by

sðtÞ ¼ ðσr sin α sin βÞt and κsij ¼ −aij sin β. Using (7)
and (8), the stability of the synchronous state is described
by the quadratic characteristic polynomial

λ2 þ ½ϵ − σμ cosðαÞ sinðβÞ�λ − ϵσμ sinðαþ βÞ ¼ 0: ð11Þ

The master stability function for the synchronous state is
given as the maximum real part Λ ¼ maxReðλ1;2Þ of the
solutions λ1;2 of the polynomial (11). These solutions λ1;2
should be considered as functions of the complex parameter
μ determining the network structure. It is convenient,
however, to use the parameter σμ in our case.
Figure 1 displays the master stability function deter-

mined for different adaptation rules controlled by β. The
blue colored areas correspond to regions that lead to stable
dynamics. By changing the control parameter β, various
shapes of the stable regions are visible. For some para-
meters, e.g., Figs. 1(c)–1(e), almost a whole half-space
either left or right of the imaginary axis belongs to the
stable regime. This resembles the case of no adaptation
where the stability of the synchronous state is solely
described by the sign of the real part of σμ sin β cos α,
see Figs. 1(a) and 1(b). Note that, in the case of no
adaptation (ϵ ¼ 0), there exist N2 neutral directions with
zero eigenvalues that do not affect the stability and
correspond to the variations of the coupling weights. We
also find parameters where most values σμ correspond to

unstable dynamics, except for an island, i.e., a bounded
region in σμ parameter space, see Fig. 1(f).
To understand the emergence of the stability islands, we

analyze the boundary that separates the stable (Λ < 0) from
the unstable region (Λ > 0). This boundary is given by
the condition Λ ¼ Reλ ¼ 0, or, equivalently, λ ¼ iγ.
Substituting this into Eq. (11), we obtain a parametrized
expression for the boundary as a function of γ that has the
form σμ ¼ ZðγÞ, with ZðγÞ given explicitly in the
Supplemental Material [92]. The latter parametrization of
the boundary is displayed in Fig. 1 as the solid black line. It
is straightforward to show that a stability island exists if
sinðαþ βÞ=ðcos α sin βÞ < 0. The latter condition indicates
a certain balance between the coupling and adaptation
function. We emphasize that the emergence of stability
islands is a direct consequence of adaptation. Without
adaptation, the boundary simplifies to the axis Reμ ¼ 0, see
Figs. 1(a) and 1(b). Intuitively, the presence of adaptivity,
i.e., Eq. (8), provides a feedback mechanism that can
change the stability (e.g., by an additional effective phase
lag), and hence gives rise to the emergence of stability
islands of the master stability function.
In the following, we analyze the behavior of the adaptive

network of phase oscillators (9) and (10) in the presence of
a stability island and show how such an island introduces a
desynchronization transition with increasing overall
coupling σ. To measure the coherence, we use the cluster
parameter RC [76,79], which is given by the number of
pairwise coherent oscillators normalized by the total
number of pairs N2. In the case of complete synchroniza-
tion, frequency clustering, or incoherence, the cluster

(d) (e)

(a) (b) (c)

(f)

FIG. 1. Master stability function ΛðσμÞ for the adaptive phase
oscillator network (9) and (10). Regions belonging to negative
Lyapunov exponents Λ are colored blue. The curve where
ΛðμÞ ¼ 0 is given as a black solid line. (a),(b) The case without
adaptation (ϵ ¼ 0) is presented for β ¼ −0.35π and β ¼ 0.2π,
respectively. Other panels: ϵ ¼ 0.01 and (c) β ¼ −0.95π,
(d) β ¼ −0.35π, (e) β ¼ 0.2π, and (f) β ¼ 0.98π. In all panels,
α ¼ 0.3π.
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parameter values are RC ¼ 1, 0 < RC < 1, or RC ¼ 0,
respectively; see Supplemental Material for details [92].
The top panel in Fig. 2 shows the cluster parameter RC

for different values of the overall coupling constant σ. We
observe that for small σ, the synchronous state is stable, see
Fig. 2(a), 2(d), and 2(g). This stability follows directly from
the master stability function since all values σμi for all
Laplacian eigenvalues lie within the stability island, see
Fig. 2(a).
By increasing the coupling strength σ, the values σμi

move out of the stability island (μi remain the same), and
the synchronous state becomes unstable, see Figs. 2(b)
and 2(c). For intermediate values of σ, multiclusters with
hierarchical structure in the cluster size emerge, see

Figs. 2(e) and 2(h) for a three-cluster state. Increasing
the coupling constant further leads to the emergence of
incoherence. In Figs. 2(f) and 2(i), the coexistence of a
coherent and an incoherent cluster is presented. Such
chimeralike states have been numerically studied for
adaptive networks in [76,78,79].
In the following, we show how our findings are trans-

ferred to a more realistic setup of coupled neurons with
synaptic plasticity. For this, we consider a network of
FitzHugh-Nagumo neurons [94–97] coupled through
chemical excitatory synapses [98–100] equipped with
plasticity. The form of the synaptic plasticity is similar
to the rules used in [84,101], with control parameters β1 and
β2 of the adaptation function, which are uniquely deter-
mined by the values of hð0Þ and Dhð0Þ of the plasticity
rule, and these are the only essential parameters of the
plasticity function, regarding the stability of the synchro-
nous state, see Eqs. (7) and (8). For more details on the
model, we refer the reader to [92,100].
The synchronous state of the network of FitzHugh-

Nagumo neurons satisfies Eqs. (3) and (4), and it is periodic
for the chosen parameter values. Using our extended master
stability approach, we determine numerically the master
stability function, which is the maximum Lyapunov
exponent of Eqs. (7) and (8).
In Figs. 3(a)–3(c), we show the master stability function

in dependence on the parameter μ=r for different
values of the overall coupling constant σ. We observe a
stability island for the chosen set of parameters; see the
Supplemental Material for other parameter values [92]. In
contrast to the phase oscillator network in Fig. 2, the shape
of the master stability function does not scale linearly with
σ. This is due to the nondiffusive coupling function; see
[92] for details. Moreover, with increasing σ, the size of the
stability island shrinks. Since all Laplacian eigenvalues μi
are independent of σ, we observe that μi=r move out of the
stability island with increasing σ. For the globally coupled
network, in particular, we have either μi=r ¼ 0 or μi=r ¼ 1.
Therefore, with increasing σ, we find a transition from
complete coherence, see Figs. 3(a), 3(d), and 3(g), to partial
synchronization and incoherence. We further observe that,
closely after destabilization, a large frequency cluster
remains visible, see Fig. 3(b,e,h). For higher overall
coupling, the cluster sizes shrink, and the number of small
clusters increases, see Figs. 3(c), 3(f), and 3(i).
In summary, we have developed a master stability

approach for a general class of adaptive networks. This
approach allows for studying the subtle interplay between
nodal dynamics, adaptivity, and a complex network struc-
ture. The master stability approach has been first applied to
a paradigmatic model of adaptively coupled phase oscil-
lators. We have presented several typical forms of the
master stability function for different adaptation rules and
observed adaptivity-induced stability islands. Besides, we
have shown that stability islands give rise to the emergence

(g) (h) (i)

(d) (e) (f)

(b)(a) (c)

FIG. 2. Dynamics in the network of 200 oscillators (9) and (10)
with random adjacency matrix Ac [92] and different values of
overall coupling strength σ. Adiabatic continuation for increasing
σ with the step size of 0.001, starting with the synchronous state
ϕi ¼ 0, κij ¼ −aij sin β. Top: shows the cluster parameter RC vs
σ. For the three values of σ, (a),(d),(g) σ ¼ 0.003, (b),(e),(h)
σ ¼ 0.007, and (c),(f),(i) σ ¼ 0.019, the plots show in (a)–(c) the
master stability function color coded as in Fig. 1, together with
σμi, where μi are the N Laplacian eigenvalues of Ac, in (d)–(f)
snapshots for ϕi at t ¼ 30000, and in (g)–(i) the temporal average
of the phase velocities h _ϕii over the last 5000 time units. Other
parameters: α ¼ 0.49π, β ¼ 0.88π, ϵ ¼ 0.01.
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of multicluster states and chimeralike states in the desynch-
ronization transition for an increasing overall coupling
strength. Qualitatively, the same phenomena have been
shown for a more realistic network of nondiffusively
coupled FitzHugh-Nagumo neurons with synaptic plastic-
ity. In this setup, the emergence of a stability island and a
desynchronization transition have been found as well.
The theoretical approach introduced in this Letter

provides a powerful tool to study collective effects in more
realistic neuronal network models, including synaptic
plasticity [32,82]. While our approach is presented for
differentiable models, it might be generalized to non-
continuous models of spiking neurons equipped with spike
timing-dependent plasticity [90,91]. Our generalized
master stability approach relies on a reduction method that
depends only on the network structure. Therefore, the
method allows for extensions to systems with single or even
distributed delays [47,48] as they are of crucial importance
in neuronal circuits. Our findings on the transition from
coherence to incoherence reveal the role adaptivity plays
for the formation of partially synchronized patterns, which
are important for understanding the functioning of neuronal

systems [102]. Beyond neuronal networks, adaptation is a
well-known control paradigm [103–106]. Our extended
master stability approach provides a generalized framework
to study various adaptive control schemes for a wide range
of dynamical systems.

This work was supported by the German Research Founda-
tion DFG, Projects No. 411803875 and No. 440145547.
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