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We search for a Gardner transition in glassy glycerol, a standard molecular glass, measuring the third

harmonics cubic susceptibility χð3Þ3 from slightly below the usual glass transition temperature down to 10 K.
According to the mean-field picture, if local motion within the glass were becoming highly correlated

due to the emergence of a Gardner phase then χð3Þ3 , which is analogous to the dynamical spin-glass
susceptibility, should increase and diverge at the Gardner transition temperature TG. We find instead that

upon cooling jχð3Þ3 j decreases by several orders of magnitude and becomes roughly constant in the regime
100 − 10 K. We rationalize our findings by assuming that the low temperature physics is described by
localized excitations weakly interacting via a spin-glass dipolar pairwise interaction in a random magnetic
field. Our quantitative estimations show that the spin-glass interaction is twenty to fifty times smaller than
the local random field contribution, thus rationalizing the absence of the spin-glass Gardner phase. This
hints at the fact that a Gardner phase may be suppressed in standard molecular glasses, but it also suggests
ways to favor its existence in other amorphous solids and by changing the preparation protocol.
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At low temperatures, glasses display a set of anomalies
compared to their crystalline counterparts. For instance, the
specific heat and thermal conductivity violate the Debye
law and the vibrational properties are different from the
ones predicted by the Debye theory of phononic excitations
[1,2]. These concomitant phenomena have been investi-
gated extensively both at the theoretical and experimental
level starting from the 1970s [3,4]. The central physical
question underpinning this field of research is the nature of
the excitations that govern the low temperature physics of
amorphous solids. One of the main proposals is that those
are associated with disordered independent two-level sys-
tems (TLS) [3,4]. Although the TLS theory allows us to
explain many experimental results, some puzzles remain
unsolved [5], and theoreticians still wonder about the
possible collective nature of the low-energy excitations
[5,6]. The recent solution of simple structural glass models
obtained in the limit of infinite spatial dimensions [7,8]
has introduced a new possibility in this research effort:
amorphous solids may undergo upon compression or
cooling a new kind of phase transition, called Gardner
transition, that changes their nature, in particular their low
temperature properties.
Let us first recall the main results of the infinite

dimensional solution that are relevant for the problem
we focus on. Within this approach an amorphous solid
is described in terms of a metabasin of configurations in
which the liquid remains trapped at the glass transition.

Since within the mean-field theory (realized in the infinite
dimensional limit) barriers between metabasins are diver-
gent, amorphous solids correspond to separate ergodic
components that can therefore be studied using a thermo-
dynamical formalism [9]. The main result found in study-
ing infinite dimensional hard and harmonic spheres [7,10]
is that these systems undergo a Gardner phase transition
when lowering the temperature or increasing the pressure:
below the critical temperature or above a critical pressure
the metabasin associated with the solid formed at the glass
transition breaks down in a multitude of glassy states
organized in a hierarchical fashion [11–13]. This hierarchy
is of the very same nature as that found in the spin-glass
state in certain mean-field spin-glass models [14]. This
Gardner phase brings about soft modes [15], diverging
susceptibilities, and collective excitations [16,17], and
therefore is said to be marginal. Remarkably, it plays a
central role in the quantitative understanding of the critical
properties of three dimensional packings of spheres at
jamming [18]. It is therefore also a possible candidate to
explain the anomalous low temperature properties of
amorphous solids.
Whether or not a Gardner transition takes place for

generic model systems is a question that has been inves-
tigated in the past few years. Already at the mean-field
level it has been shown that the emergence of a Gardner
phase may depend on the model (interaction potential) and
on the cooling procedure; proximity to jamming favors its
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existence [10,19] while for some interaction potentials, well
annealed glasses do not undergo a Gardner transition upon
cooling [20,21]. Therefore, the emergence of Gardner
physics, even at the mean-field level, is not generic and
may depend on the physical context, interaction potential,
and preparation details. Similar results have also been found
in simulations, where evidence of the Gardner transition has
been found mainly in hard sphere systems [16,22–24].
On the experimental side, favorable but somewhat indirect
evidence has been reported in granular glasses [25], colloidal
glasses [26], and in two molecular glasses exhibiting a
strong Johari-Goldstein β peak [27]. From the theoretical
point of view, going beyond the realm of mean-field theory
and including finite dimensional fluctuations is very chal-
lenging: the Gardner transition is alike to the spin-glass
transition in a field [23,28], for which renormalization group
results are not conclusive on the possibility of having a
transition in three dimensions [28–31].
All in all, whether standard molecular glasses display a

Gardner phase, or at least some signature of it, remains an
open question. The aim of this Letter is to address this issue
by combining experiments and theory. At variance with
previous experiments [25–27], we measure the low temper-
ature behavior of the third harmonic susceptibility of glassy
glycerol, which is a direct smoking gun of the transition
and is expected to diverge in correspondence of the Gardner
point (see below). We do not find any hint of such behavior,
therefore excluding the possibility of a transition, at least
down to 10 K. In parallel, from a theoretical point of view,
we rationalize our findings using a phenomenological
approach: at variance with previous theoretical approaches
that investigated numerically the Gardner transition in
finite dimension [20,21], we build up a phenomenological
model of the transition itself and we show that within the
assumptions considered in this framework, we cannot
expect a Gardner transition in standard fragile molecular
glasses, at least in typical experimental conditions.
We start by presenting the results of the experiments on

third harmonics cubic susceptibility χð3Þ3 in glassy glycerol
from 180 K ≃ Tg − 8 K, Tg being the usual glass transition
temperature, down to 10 K. At low temperature local

excitations have a dipolar moment, χð3Þ3 at fixed angular
frequency ω is expected to probe spin-glass order [32] and
therefore to diverge upon cooling if there is a Gardner

transition [33]. Indeed χð3Þ3 is the dielectric equivalent of
the dynamical spin-glass susceptibility. More precisely,
dynamical critical theory leads to [34–36]

χð3Þ3 ðωÞ ¼
�

TG

jT − TGj
�

νð2df−dÞ
g

�
ω

ω0

�
TG

jT − TGj
�

zν
�
; ð1Þ

where ω0 is the microscopic frequency, ν and z are the
critical exponents related to the correlation length and to the
relaxation time, respectively, g is a scaling function, and df

is the fractal dimension of correlated regions (d is the
spatial dimension). Using dynamical scaling, one finds that
approaching TG the third harmonics cubic susceptibility

χð3Þ3 should increase when probed at a fixed frequency and it

should reach a maximal value of χð3Þ3 ðωÞ ∼ ðω0=ωÞð2df−dÞ=z
at T ¼ TG.

Henceforth, we shall report δχð3Þ3 ðTÞ≡ χð3Þ3 ðTÞ −
χð3Þ3 ð30 KÞ. The reason for this substraction is that at

low temperatures the value of jχð3Þ3 j is typically 104 times
smaller than around the glass transition temperature, i.e., it

is so small that the residual spurious third harmonics Vð3Þ
source

of the voltage source competes with the third harmonics
signal of the glycerol sample. Using the fact that the
spurious third harmonics does not depend on T, we can
cancel it out by subtracting the value at the reference
temperature T ¼ 30 K. In the Supplemental Material [37]
we present more details and tests that show the efficiency of
our experimental procedure.

In Fig. 1 we show the behavior of δχð3Þ3 for a frequency

9.878 Hz as a function of T—note that jχð3Þ3 ð30 KÞj ¼
ð1.0� 0.5Þ × 10−19 m2=V2. Our results show a decrease
from 180 to 100 K. Close to the glass transition temperature

Tg, jχð3Þ3 j probes correlated particle motion [35,38].
The decrease below Tg is explained as a progressive

depletion of mobile regions inside the glass matrix, and
does not provide any hint of a Gardner transition. Figure 2

focuses on temperatures below 100 K. In this regime jχð3Þ3 j
is essentially constant. A computation of its value based
on the assumption of independent local excitations is
presented in the Supplemental Material [37] and leads to

FIG. 1. Temperature dependence of δχð3Þ3 ðTÞ≡ χð3Þ3 ðTÞ −
χð3Þ3 ð30 KÞ where χð3Þ3 is the third harmonics cubic susceptibility
of glassy glycerol, here measured at an electrical frequency
f ¼ 9.878 Hz. The left axis is for the real part data, while
the right axis is for the opposite of the imaginary part data.

Inset: temperature evolution of jδχð3Þ3 ðT; fÞj for T ≤ 25 K,
where f ¼ 9.878 Hz (squares) or f ¼ 530 Hz (triangles).
The solid line is an example of the 1=T2 dependence expected
for non interacting TLSs.
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a value 0.9 × 10−19 m2=V2 which agrees well with the one
found by experiments [39]. Note that in the regime [10 K;

16 K], one sees a very small increase of jδχð3Þ3 ðT; fÞj upon
cooling. This phenomenon, which is hardly above our
experimental uncertainty, see the error bars given in the
inset of Fig. 1, was systematically found in the several
experiments that we carried out either by varying the value
of the electric field E or the angular frequency ω. It can be
explained using TLS theory, which predicts a behavior

jδχð3Þ3 ðT; fÞj ∝ 1=T2; see the solid line in the inset of Fig. 1
and the Supplemental Material [37] for more detail. All in
all, our experimental results do not show any evidence of a
Gardner transition from Tg down to 10 K, and they are
quantitatively compatible with a scenario based on inde-
pendent local excitations. Because we are limited to
T ≥ 10 K, we cannot strictly exclude that some Gardner
transition might happen at a critical temperature below 8 K.
In order to rationalize these findings we use a real space

approach. Our main assumption is that thermal fluctuations
in glasses are due to localized excitations corresponding to
partial local atomic motion within the frozen glass matrix
[42]. This description naturally connects to the one put
forward in the past for the low temperature properties of
molecular glasses, which is based on two-level systems
(TLS) [3,5] as well as to many theories of rheology of
amorphous solids, which are based on localized soft spots
of particles that are prone to rearrangement [43,44].
Besides, recent simulations exhibit localized excitations
in models of molecular glasses [21]. The interaction
between excitations is mediated by the electric and the
elastic fields. Since the local conformations corresponding
to the excitations are random the resulting couplings are
random. From this real space perspective, the Gardner
phase would be a spin-glass phase arising from the
interaction of local excitations.
In order to study the Gardner phase, we model the

localized excitations as N degrees of freedom located in
random positions in space. Their density is ρ ¼ N=V,
where V is the total volume of the system. Each one of them
will be denoted σx, where x is the corresponding position.

Each localized excitation can be in mx (x-dependent)
states, which correspond to the possible conformations
of the localized excitation, i.e., of the local atomic positions
belonging to the excitation. For simplicity, in the following
we take mx ¼ 2 for any x as done for TLS, and use a
notation where σx ∈ f−1; 1g correspond, respectively, to
the low and high energy state of the local excitations. Our
arguments and conclusions carry over straightforwardly for
mx > 2. The corresponding Hamiltonian reads

H ¼ −U0

X
i≠j

1

jxi − xjj3
uijσxiσxj

−
1

2

XN
i¼1

ϵiσxi
: ð2Þ

We have decomposed the interaction between the local
excitations in an amplitude, which decreases as the cube of
the distance between excitations, and in a random adimen-
sional coupling uij, which depends on the local stress
tensors and electric dipoles corresponding to the different
states of the local excitations, see, e.g., [3–5] for a similar
modeling for TLS. U0 is the energy scale of the interaction
(measured in temperature times unit of volume). The fact
that local excitations can be in states with different local
energies is encoded in the random positive ϵis. The model
is effectively a spin glass since the couplings uij are
characterized by an even distribution. This follows from
the fact that uij is bilinear in the dipolar electric moments
and the strain tensors associated with the interacting local
excitations [3–5]. Since their distribution in space is
statistically symmetric under rotation, in particular under
a change of sign, the probability of uij and −uij are
identical. Note that there are correlations between cou-
plings uij associated with the same excitations, i.e., uij; uik
are correlated random variables. The local positive energies
ϵi are assumed to be independent random variables with a
density distribution ð1=ΔtypÞfðϵ=ΔtypÞ, where Δtyp is the
typical value of ϵi for a localized excitation. We expect,
although it is not a crucial ingredient for what follows, that
Δtyp is of the order of the typical effective barrier for β
relaxation below the glass transition temperature, i.e.,
thousands of kelvins.
Our aim here is not to construct the precise phase

diagram of this model, for which a precise characterization
of the probability distribution of the uij’s and ϵi’s would be
required, but instead we want to investigate the possible
existence of the Gardner phase based on order of magnitude
estimations. In order to do that, one of the key ingredients is
the amount of local excitations per unit volume, which can
be estimated from TLS physics, since those correspond to a
very low-energy flank of the distribution. Results on TLS
tell us that fð0Þ > 0 and that the density of thermally active
localized excitations at, say, 10 K is around 1=ð7 nmÞ3
[3,4]. Since those are expected to be characterized by
ϵ ≪ Δtyp, we obtain that

FIG. 2. Close-up view of the low T part of Fig. 1.
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Z
10 K

0

dϵ
1

Δtyp
f

�
ϵ

Δtyp

�
≃
10 K
Δtyp

fð0Þ ≃ 1

ð7 nmÞ3 ;

which sets the scale of fðxÞ (energies are expressed in
units of temperature). Note that assuming a Δtyp of the
order of a few thousands of kelvin (see above) one gets
approximatively an excitation per nanometer cube, which
seems reasonable for typical excitations. In order to
connect with the notation used for TLS, we recall that
in that case ϵ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 þ Δ2
0

p
where the potential disorder

energy δ and the coupling tunnel energy Δ0 are distrib-
uted with a density ρðδ;Δ0Þ ¼ p̄=Δ0 [3,4] where p̄
is a constant. This yields—see Supplemental Material
[37] and [3,4]—fð0Þ=Δtyp ≃ p̄ ln ðΔmax

0 =Δmin
0 Þ, where

ln ðΔmax
0 =Δmin

0 Þ ≃ 20. An important hypothesis for our
arguments is that the function fðxÞ is regular. This
amounts to assuming that fðxÞ=fð0Þ starts from one at
x ¼ 0, varies for x of the order of one, and eventually goes
to zero for larger x’s. As far as order of magnitude
estimates are concerned, we can use the simple form
fðxÞ ¼ fð0Þθðx − 1Þ, with θðxÞ the Heaviside function.
The main issue we wish to address is whether the

interaction between local excitations is large enough to
lead to a spin-glass phase. In order to work this out, one has
to compare the value of the interaction to the local energy
difference ϵi; if the latter is too strong then a local excitation
is subjected to a very strong bias toward the low-energy
state σi ¼ −1 and its physical behavior is insensitive to the
other ones, i.e., no long-range order can be present. Note
that even though the interaction is a power law, it is short
ranged as far as spin-glass order is concerned [45], i.e., the
effective field due to the interactions with the other local
excitations is dominated by the closest excitations [46].
Not all local excitations can be considered active. In fact,

for a given temperature T and a given observation time τ,
some of them are frozen out and cannot change state, or
they are just too slow to give rise to collective behavior and
cannot participate to the putative spin-glass state. As a
consequence, to be relevant, a local excitation must have an
ϵi less than a certain energy ϵ̄ðT; τÞ ≤ Δtyp which depends
on T and τ. On general grounds one expects this energy
scale to be less than or equal to Δtyp, and to decrease with T
and increase with τ [48]. The precise expression of ϵ̄ðT; τÞ
is not needed for our arguments.
Using the simplified form of fðxÞ we therefore find that

the density of active local excitations is

N ½ϵ̄ðT; τÞ� ¼ fð0Þ ϵ̄ðT; τÞ
Δtyp

:

From (2) the strength of the interaction between the local
excitations is I ¼ U0=l3, where lðTÞ is the typical
distance between them. Hence, the interaction strength is
proportional to the density of localized excitation, which by

the previous equation is proportional to the typical strength
ϵ̄ðT; τÞ of the random fields. These relations therefore allow
us to establish a direct comparison between I and ϵ̄ðT; τÞ:

I ½ϵ̄ðT; τÞ� ¼ U0

l3
≃U0N ½ϵ̄ðT; τÞ� ¼ kϵ̄ðT; τÞ; ð3Þ

where k ¼ U0fð0Þ=Δtyp ¼ U0p̄ ln ðΔmax
0 =Δmin

0 Þ. For mole-
cular glass former prepared under normal quenched con-
dition k is of the order 0.002–0.02 [49,50]. In the
Supplemental Material [37] we work out this value for
glycerol, and show that even considering the additional
modes showing up in the Boson peak region, k may reach
0.04 at most. This implies that the strength of the
interaction I ½ϵ̄ðT; τÞ� is generically much smaller than
the typical local energy ϵ̄ðT; τÞ [51]. Therefore, we expect
that the Gardner spin-glass phase should be suppressed as
we explain now. Indeed, theoretical studies have shown that
random fields hamper the existence of long-range order:
within the droplet model an infinitesimal random field is
enough to destroy the spin-glass phase [52]; whereas within
mean-field theory a finite field strength, comparable to the
coupling strength, is needed [53]. Simulations and experi-
ments have confirmed the negative role of the field: for
three dimensional short-range spin glasses [54,55], if a
transition takes place, it does so for field strengths much
lower than the coupling strength. For three dimensional
dipolar spin-glasses, a model similar to the one studied in
this Letter, even without a field the existence of long-range
spin-glass order is not established [56], thus making the fate
of the spin-glass phase in a field even more uncertain in this
case. All that leads us to the conclusion that in the present
case, where the interaction strength between local excita-
tions is typically twenty to fifty times smaller than the value
of the local random field, the emergence of the spin-glass
phase, and hence of the Gardner phase, is unlikely.
The natural question that comes out from the conclusions

above is why molecular glasses are so different from
colloidal and granular ones for which instead strong
signatures of Gardner physics have been found [16,
22–27]. Our results point toward two possible reasons.
On the one hand, colloids and granular systems are
prepared in such a way that the resulting solids are much
less annealed, since the timescale for microscopic motion is
much larger (10−6 s for colloids and a fraction of seconds
for granular media). This leads to a much higher density of
soft localized excitations, and in consequence to an
increase of the interactions term over the random field
one, thus favoring the existence of the Gardner phase. On
the other hand, the proximity to the jamming transition that
takes place for both systems also transforms the nature of
their excitations. Indeed, at jamming, on top of localized
excitations there are also delocalized ones [57,58], which
could favor the Gardner transition. How the mechanisms
outlined above conspire together to lead to Gardner physics
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in three dimensional colloidal and granular systems is not
clear. Simulations and experiments can help clarify this
issue. Direct analysis of the nature of excitations, as the
ones performed numerically in [59], are instrumental.
Another possibility is studying systems where the two
mechanisms above are separated, e.g., ellipsoids or hard
spheres under SWAP dynamics [60,61]. To find a Gardner
transition in molecular glasses, it would be interesting to
find protocols to prepare very poorly annealed systems.
Another possibility is to study network glasses, such as
amorphous silica (SiO2), whose structure is close to be
marginally connected [62,63] and may then display
Gardner physics.
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