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In magnetic topological insulators, quantized electronic transport is intertwined with spontaneous
magnetic ordering, as magnetization controls band gaps, hence band topology, through the exchange
interaction. We show that considering the exchange gaps at the mean-field level is inadequate to predict
phase transitions between electronic states of distinct topology. Thermal spin fluctuations disturbing the
magnetization can act as frozen disorders that strongly scatter electrons, reducing the onset temperature of
quantized transport appreciably even in the absence of structural impurities. This effect, which has hitherto
been overlooked, provides an alternative explanation of recent experiments on magnetic topological
insulators.
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The inquiry into topological materials has recently
mingled with the quest for low-dimensional magnets,
giving birth to an emerging frontier known as magnetic
topological insulators (TIs) where a topologically nontrivial
band gap is controllable by spontaneous magnetic ordering
[1–4]. Therefore, manipulating magnetization becomes a
new tuning knob of the quantized electronic transport. For
example, in a TI with coexisting ferromagnetic order, the
system should exhibit the quantum anomalous Hall (QAH)
effect when a finite magnetization is established below the
Curie temperature (Tc) [5]. However, the QAH effect was
first realized in a magnetically doped TI in which the
magnetic moments are embedded randomly [6], leading to
strong disorder effects that significantly reduce the electron
mobility and hence inhibit the appearance of quantized
transport [7–10]. As a result, the actual onset temperature of
the QAH effect in such a material is much lower than the
magnetic ordering temperature.
Removing this roadblock calls for magnetic TIs in which

the magnetic moments are arranged periodically on a
lattice. This can be achieved in either an intrinsic magnetic
TI [11–14] or a heterostructure with a TI sandwiched
between two magnetic thin films [15,16]. However, the
quantized transports in these systems turned out to be as
vulnerable to an increasing temperature as those studied in
magnetic doped TIs [17]. While this discouraging obser-
vation might still be attributed to structural impurities, it
remains an open question what is responsible for the
disappearance of QAH effect at a temperature far below Tc.
In this Letter, we introduce an alternative mechanism in

magnetic TIs that can substantially reduce the onset tempera-
ture of quantized transport even in the absence of structural
impurities. Contrary to the electrons governed by an
formidably high Fermi temperature, spin fluctuations (SF)
disturbing the magnetic order are very susceptible to thermal

agitations [18]. Because spin fluctuations take place on a
timescale that is orders of magnitude larger than the electron
relaxation time [19], the electron dynamics can adjust
adiabatically to the instantaneous configuration of magnetic
moments, seeing the instantaneous spin fluctuations as a
random potential almost frozen in time. For this reason,
thermal spin fluctuations in the magnetic degree of freedom
can manifest as effective disorders affecting the electron
transport, even though magnetic atoms are arranged per-
fectly on a lattice free of structural impurities.
As schematically illustrated in Fig. 1(a), we model the

system as a magnetic trilayer where topological electrons
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FIG. 1. (a) Schematic of a magnetic TI in the presence of spin
fluctuations. (b) The mean field scaled by Ms ≡ hMðT → 0Þi for
B → 0 and the susceptibility χ as functions of temperature.
(c) Probabilities of different Sz on an individual spin versus
temperature for S ¼ 5=2.
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are confined between two magnets, which applies to not
only a heterostructure but also an intrinsic magnetic TI with
uniform magnetic ordering [20]. To ensure the relative
orientation of the two magnetic layers, we include an
auxiliary magnetic field B along z axis to stabilize the
system, but the B → 0 limit will be taken at the end. Now
let us quantify the magnetization dressed with spin fluc-
tuations in an individual magnetic layer, which is supposed
to be independent of all other layers as schematically
illustrated in Fig. 1. Based on recent experiments
[12–14,16], the magnet under consideration can be cap-
tured by the minimal Hamiltonian

HM ¼ −J
X

hiji
Si · Sj − κ

X

i

S2i;z − gμBB
X

i

Si;z; ð1Þ

where J > 0 is the (intralayer) Heisenberg exchange
coupling, κ is the uniaxial anisotropy, g is the Landé
factor, μB is the Bohr magneton, and hiji enumerates all
nearest neighbors. The spin vector Si is dimensionless.
In the mean-field approximation [18], spins become

effectively decoupled while the exchange interaction that
entangles different spins recasts as an effective mean
field hMi ¼ JhPi Si;ziT=ðgμBNÞ where N is the total
number of spins and h� � �iT denotes the thermal average.
Consequently, the system becomes a paramagnet interact-
ing with a total magnetic field Btot ¼ Bþ hMi as if there is
no exchange interaction. In the limit J ≫ κ, the effective
Zeeman energy is E ¼ −gμBðBþ < M >ÞPi Siz, from
which the mean field hMi can be solved self-consistently
[18]. Figure 1(b) shows the mean field hMi and
the susceptibility χ ≡ limB→0 ½hMðBÞi − hMð0Þi�=B for
S ¼ 5=2 as a function of temperature scaled by the
Curie temperature Tc ¼ aJSðSþ 1Þ=3kB on a simple
square lattice with the coordination number a ¼ 4. As
every spin is now isolated from all other spins, the
probability of an individual spin Si taking Sz perpendicular
to the plane is determined straightforwardly by the
Boltzmann distribution PðSzÞ¼expð−ε=kBTÞ=Z where ε¼
−gμBSzðBþhMiÞ and the partition function Z ¼
sinh ½ð2Sþ 1Þy�= sinh y with y ¼ aJ < M > =2T. As plot-
ted in Fig. 1(c), the spin is fully polarized to Sz ¼ S at
T ¼ 0, whereas when T → Tc all possible quantized values
of Sz tend to be equally probable, destroying the magneti-
zation completely at Tc.
The mean-field approach enables us to determine the

projection of a given spin Si on z direction probabilistically.
With the spherical parametrization Si ¼ Sðsin θi cosϕi;
sin θi sinϕi; cos θiÞ, it amounts to determining θi probabil-
istically. The azimuthal angle ϕi, on the other hand, cannot
be captured by the mean-field picture. Because we only
consider the incoherent thermal spin fluctuations, ϕi
should be uniformly distributed within the range ½0; 2πÞ.
Moreover, because different modes of spin excitation
superimpose with completely random phases, ϕi should

be independent of its neighbors. In other words, the variable
ϕ is spatially uncorrelated, or hϕiðtÞϕjðtÞi ∼ δij at any
instant of time. In contrast, the temporal correlation of ϕ is
much larger than the electron relaxation time. Specifically,
hϕiðtÞϕiðt0Þi ∼ e−jt−t0j=τs , where the characteristic decay
time τs may depend on the mode of excitation, but a
qualitative estimation is that τs ∼ 1=αω where α is the
Gilbert damping and ω is the frequency of ferromagnetic
resonance. So a typical value of τs is on the order of
10–100 ns. Comparatively, the electron relaxation time τe
determined by the Fermi energy is on the order of 1–10 fs,
which is 7 orders of magnitude smaller than τs. A similar
argument applies to the correlation of θ as well. Therefore,
while spin fluctuations are spatially uncorrelated, they
exhibit extremely long temporal correlation, which
amounts to a random potential frozen in time acting on
the electrons [21]. This justifies the adiabatic approxima-
tion essential to our following discussions.
Even though Dirac electrons and magnetic layers repeat

periodically in an intrinsic magnetic TI, the system can be
simplified as a trilayer heterostructure consisting of only
one TI layer sandwiched between two magnetic layers
as illustrated in Fig. 1(a) [20]. Under the basis ψk ¼
ðctk↑; ctk↓; cbk↑; cbk↓ÞT with ctðbÞkσ annihilating an electron of
momentum k and spin σ on the top (bottom) surface, the
magnetic TI can be described by the Hamiltonian
HMTI ¼ HTI þHex, where [5,22,23]

HTI ¼ vFðkyτz ⊗ σx − kxτz ⊗ σyÞ þmðkÞτx; ð2Þ

Hex ¼ Jex
X

i

Si · σ: ð3Þ

Here, vF is the Fermi velocity, Jex is the exchange coupling
between the Dirac electrons and the magnetic moments,
mðkÞ ¼ m0 þm1k2 describes the overlap of Dirac electrons
in the top and bottom surfaces, and σ and τ are the vectors of
Pauli matrices acting on the spin and layer degree of freedom,
respectively. The lattice wave vectors kx;y are defined in the
first Brillouin zone of a L ×W square lattice with the lattice
constant a0 ≡ 1. Since the Fermi temperature TF is orders of
magnitude larger than Tc, the electron dynamics is effect-
ively in the zero temperature regime as we focus on T < Tc
[24,25]. Unless otherwise stated, we will take vF ¼ 1
as the energy unit and assume m1 ¼ 1, kBTc ¼ 0.002,
Jex ¼ 0.035, and S ¼ 5=2. However, our theory is universal
and not limited to these special parameters.
To demonstrate the influence of spin fluctuations on the

electron transport more clearly, it is instructive to first look
into the homogeneous case without any spin fluctuations, in
which Sz is described by the mean field while Sx and Sy are
completely ignored. In this situation, the lattice periodicity
is restored in the exchange field, so we can transform the
exchange Hamiltonian in Eq. (3) into the momentum space,
and HMTIðkÞ ¼ HTI þ λτ0 ⊗ σz, where λ ¼ gμBJexhMi is
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the homogeneous exchange field that depends on tempera-
ture through the mean field hMi. Diagonalizing HMTIðkÞ
gives the band dispersion and the corresponding eigen-
states, based on which we can calculate the Chern numbers
characterizing different topological phases. At low temper-
atures, λ > m0, the system is a QAH insulator with a Chern
number C ¼ 1. By contrast, the system becomes a normal
insulator (NI) with C ¼ 0 when λ < m0 at high temper-
atures. Setting λ ¼ m0 solves the critical temperature Thm
for the homogeneous case. Therefore, the system under-
goes a topological phase transition at finite temperature
below Tc only if m0 is less than the maximum exchange
field δ≡ gμBJexMs with Ms ¼ hMðT → 0Þi the saturated
mean field. In Fig. 2, the critical temperature Thm for the
homogeneous case is marked by the black arrows for
different ratios of m0=δ.
Next, we turn to the transport property in the presence of

spin fluctuations, which, as discussed above, act on
electrons as a frozen random potential. In the considered
magnetic TI, the appearance of topological edge states can
be minimally revealed in a two-terminal junction, where the
longitudinal conductance is σ ¼ e2=h (σ ¼ 0) in the QAH
(NI) phase. We calculate σ through the Landauer-Büttiker
formula [26] σ¼Tr½ΓLGrΓRGa�, where Γβ ¼ i½Σr

β − ðΣr
βÞ†�

with β ¼ L or R, and Gr ¼ ðGaÞ† ¼ ðEF −HMTI−
Σr
L − Σr

RÞ−1 with EF the Fermi energy and Σr
β the self-

energy due to the coupling with metallic leads.

To simulate the random potential, we generate a set of
L ×W ¼ 200 × 200 random numbers representing Sz ¼
S cos θ on each lattice according to the probability distri-
bution PðSzÞ ¼ expð−ε=kBTÞ=Z determined by the mean-
field approach. We also assign each spin a random phase ϕ
specifying its transverse component as discussed previ-
ously. Then we calculate the conductance σ under this
particular configuration of random potential. Repeating this
procedure for 160 times, we obtain the ensemble average of
σ, which is shown in Figs. 2(a)–2(c) as a function of
temperature for different m0. We see that σ changes from
e2=h to 0 (i.e., transition from the QAH to NI phase) at a
critical temperature TSF manifestly below what it would be
without spin fluctuations (i.e., Thm determined by solving
λ ¼ m0), as indicated by the red arrows. The reduction of
critical temperature appears to be more striking for larger
m0 in Fig. 2. For m0 ¼ 0.8δ [Fig. 2(c)], σ even becomes ill
quantized in the QAH phase due to the finite-size effect
[27]. If the system is infinite, σ would be a step function
across the critical point. Finite-size effects will be discussed
in more detail later.
The topological phase transition between the QAH

insulator and the NI can be alternately characterized
by the current noise SðωÞ ¼ 1

2

R
dτeiωτhδÎðtÞδÎðtþ τÞþ

δÎðtþ τÞδÎðtÞi, where δÎðtÞ ¼ ÎðtÞ − hÎðtÞi with ÎðtÞ the
current operator [28,29]. Using the nonequilibrium Green’s
function [30], we calculate the zero-frequency current noise
S0. Figures 2(d)–2(f) show the ensemble average of S0
corresponding to Figs. 2(a)–2(c). The noise S0 peaks at the
critical point and extends over a finite range of temperature
due to finite-size effects; it will become infinitely sharp at
the critical point if the system is infinite. We see that σ and
S0 plotted in Fig. 2 perfectly agree with the relation S0 ¼
2e3Vσð1 − σÞ=h where V is the bias voltage across the
junction, affirming that the QAH edge states can be
described by a one-channel ballistic tunneling model [29].
Without spin fluctuations, the mean field hMi, hence the

exchange field λ, decreases as temperature is raised. When
λ becomes comparable to m0, the chiral edge states on
opposite transverse edges start to overlap, merging into the
bulk states [27]. This destroys the electron transport
and diminishes the conductivity. Spin fluctuations as
random potential, on the other hand, brings about scattering
of the chiral edge states, which facilitates their overlapping
and merging into the bulk states, so the phase transition
takes place at a reduced temperature. This subtle mecha-
nism can be unraveled by studying the nonequilibrium
current distribution inside the magnetic TI. Under a bias
voltage V across the system, the local current flowing
from site i to its neighbor j is given by Jnei→j ¼
ImfTr½t̂ijðGrΓLGaÞji�g2e2V=h where t̂ij is the hoping
matrix [31].
Figure 3 shows the distributions of nonequilibrium

currents in the TI at three representative temperatures for
m0 ¼ 0.5δ [(a)–(c)] and m0 ¼ 0.8δ [(d)–(f)], respectively.

(a) (d)

(b) (e)

(c) (f)

FIG. 2. (a)–(c) Ensemble average of the two-terminal conduct-
ance σ as a function of temperature for different m0 and fixed
δ ¼ gμBJexMs (the maximum exchange field). (d)–(f) The
corresponding zero-frequency current noise S0. The red arrows
mark the critical temperature TSF obtained by the finite-size
scaling shown in Fig. 4. The black arrows mark where m0 ¼ λ,
representing the critical temperature Thm in the absence of spin
fluctuations. The system size is L ¼ W ¼ 200 and the error bars
are magnified ten times for visual clarity.
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At T ≪ TSF and m ¼ 0.5δ [Fig. 3(a)], the electron flow is
fully confined to one edge, so the conductance is quantized
—a hallmark of the QAH effect. For m ¼ 0.8δ [Fig. 3(d)],
however, the edge current becomes much wider so that it
partially leaks into the opposite edge and flows backwards,
leading to an ill-quantized conductance as shown in Fig. 2(c).
At the true critical pointT ¼ TSF [(b) and (e)] where λ > m0,
spin fluctuations strongly scatter the electrons from one edge
to the other, because of which electrons cannot propagate in
one direction dictated by the applied bias voltage; they are
instead back-scattered to the left lead. Accordingly, the chiral
edge states become indistinguishable from the bulk states.
At T ¼ Thm [(c) and (f)] where λ ¼ m0, the edge states
completely disappear and the conductance is identically zero.
Integrating the current density over the full widthW yields a
conductance that quantitatively agreeswith the results shown
in Fig. 2, confirming the validity of the nonequilibrium
distribution.
In Fig. 4, we draw a full phase diagram on the m0 − T

plane. Because the specific profiles of σ and S0 depend on
the system size, the actual critical temperature TSF can be
extracted by finite-size scaling. To this end, for a given set
of variables, we calculate σ as a function of T for three
different system sizes and identify the intersection of the
three curves as TSF (see the inset of Fig. 4). The critical

temperature TSF (Thm) calculated in the presence (absence)
of spin fluctuations is depicted by red dots (dashed lime
curve). We see that both TSF and Thm decreases monoton-
ically with an increasing ratio of m0=δ. However, the
discrepancy ΔT ¼ Thm − TSF, which measures the reduc-
tion of critical temperature due to spin fluctuations, reaches
maximum around m0=δ ¼ 0.75; ΔT vanishes for both
m0=δ → 0 and m0=δ → 1 limits.
Finally, we check the consistency of our conclusion by

calculating the Hall conductance σxy using the noncom-
mutative Kubo formula with periodic boundary conditions,
in which the Chern number is obtained directly from the
real space rather than a momentum-space integral [32,33].
For a system of L ¼ W ¼ 50, we numerically calculate σxy
and superimpose the result in Fig. 4, where it exhibits a
phase boundary that matches TSF remarkably well.
We stress that the mechanism of spin fluctuations studied

in this Letter is entirely different from the ordinary
magnon-electron scattering. First of all, we have considered
the adiabatic regime such that spin fluctuations are frozen
in time, whereas magnons are propagating spin waves.
Second, spin fluctuations form a background random
potential that scatters the electrons passively, while
reversely, the excitation of spin fluctuations by electrons
is ignored. Third, the physical picture of spin fluctuations
persists up to Tc, whereas magnons are well defined only at
low temperatures. In addition, the mechanism here is
intrinsic, different from structure impurities, which can
be removed by improving the material quality.
To close our discussion, we further remark that

if adjacent magnetic layers are antiferromagnetically

(a)

(b)

(d)

(e)

(f)(c)

FIG. 3. Nonequilibrium current distributions for m0 ¼ 0.5δ
(a)–(c) and m0 ¼ 0.8δ (d)–(f) at T ¼ 0.02Tc, T ¼ Ttsf , and
T ¼ Thm. Red arrows indicate local current densities and direc-
tions.

FIG. 4. Phase diagram of the two-terminal conductance on the
m0 − T plane. The inset illustrates how TSF is obtained from
finite-size scaling. The red dots plot TSF and the red curve is a
guide to the eye that marks the phase boundary in the presence of
spin fluctuations. The dashed lime curve marks Thm, which is the
phase boundary in the absence of spin fluctuations. The back-
ground color shows the Hall conductance calculated independ-
ently for a system of L ¼ W ¼ 50, which conforms with TSF.
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directed, the Dirac electrons will form an axion insulator
rather than a QAH insulator below Tc, which has been
realized in MnBi2Te4 [13]. Unlike the QAH insulators, the
topological behavior in an axion insulator does not mani-
fest in transport properties; instead, it leads to quantized
magnetoelectrical responses [15,34–36]. However, by
performing a similar analysis of spin fluctuations, we find
that the coefficients of magnetoelectrical responses only
experience negligible changes.
In summary, we have demonstrated that spin fluctuations

can play the role of a frozen random potential that leads to a
significant reduction of the onset temperature of quantized
transport in a magnetic TI. Even in the absence of structural
disorders, considering the exchange gap at the mean-field
level is insufficient to predict the critical temperature
correctly. Our result provides an alternative explanation
of the puzzling in recent experiments, and points out an
unavoidable mechanism suppressing the quantized trans-
port even in clean magnetic TIs.
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