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Disordered elastic interfaces display avalanche dynamics at the depinning transition. For short-range
interactions, avalanches correspond to compact reorganizations of the interface well described by the
depinning theory. For long-range elasticity, an avalanche is a collection of spatially disconnected clusters.
In this Letter we determine the scaling properties of the clusters and relate them to the roughness exponent
of the interface. The key observation of our analysis is the identification of a Bienaymé-Galton-Watson
process describing the statistics of the number of clusters. Our work has concrete importance for
experimental applications where the cluster statistics is a key probe of avalanche dynamics.
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Many catastrophic phenomena such as epidemic out-
breaks, earthquakes [1–3], or financial crashes are initiated
by a single unstable seed that destabilizes many other
elements. The instability propagates as a cascade where
each unstable element triggers a number of offsprings.
These processes are also observed in the response of
disordered systems to small perturbations and are called
avalanches [4]. The cascades of plastic events in amor-
phous materials [5,6], the ground-state reorganizations of
mean-field spin glasses [7,8] or the jerky motion of fronts
propagating in heterogeneous media [9,10] are examples of
such avalanches.
We can consider that the first model of avalanches was

introduced by Bienaymé [11] and by Galton and Watson
[12] who were interested in the extinction probability of
surnames. In this model the number of offspring per
individual is an independent identically distributed random
variable whose average R0 determines the fate of the
process. If R0 > 1 there is a finite probability that the
surname never gets extinct, while for R0 ≤ 1 the surname
gets extinct with probability one. In this case the family size
S (total number of descendants of an individual) is a
stochastic variable displaying a power law distribution
PðSÞ ∼ S−τ, with exponent τ ¼ 3=2, which is truncated
(exponentially) above a maximal size Sm ∼ ð1 − R0Þ−2.
We are interested in the avalanches observed when elastic

interfaces of dimension d, such as magnetic domain walls
[13–15], crack fronts [16–20], imbibition fronts [21,22], or
wetting lines [23–27] propagate in heterogeneous materials.
Under the action of an external force f, the front remains
pinned up to a critical force fc where it undergoes a
depinning transition. At the depinning point the front is
in a self-affine configuration characterized by the roughness
exponent ζ, whose value is known from numerical simu-
lations [28,29] and functional renormalization group (FRG)

calculations [30–33]. Near depinning, small perturbations
can trigger avalanches which are large rearrangements of the
front, of total size S. In the presence of short-range (SR)
elasticity, avalanches are spatially connected and the size
exponent τ is smaller than the one predicted by the
Bienaymé-Galton-Watson (BGW) model. Indeed spatial
information is absent from the BGW model while one
expects that, for an unstable point of the interface, the analog
of the number of offspring depends on its generation and its
position. Moreover, the avalanche of an interface has a
spatial location characterized by a linear size l that displays
a power law distribution PðlÞ ∼ l−κ.
In many physical situations, fronts are, however, char-

acterized by a long-range (LR) elastic kernel that decays as
1=rdþα. In particular it has been shown that the elasticity
of crack fronts [16,34] and wetting lines [23] is LR with
α ¼ 1. The shape of the interface is affected by the range of
the interactions. As a function of α we identify three
regimes: (i) the mean-field (MF) case, for α ≤ d=2, where
the interface is flat and ζ ¼ 0, (ii) for d=2 < α < 2 the
interface is rough and ζ grows with α, (iii) for α ≥ 2, ζ
saturates to its SR value, ζSR. For LR interactions with
d=2 ≤ α ≤ 2 the depinning predicts that S ∼ ldþζ and that
the avalanche exponents are not independent but related to
the roughness exponent via the relations [13,31,35]

τ ¼ 2−
α

dþ ζ
; κ ¼ 1þ dþ ζ − α for

d
2
≤ α ≤ 2: ð1Þ

For α > 2 the equations saturate to τ ¼ 2 − 2=ðdþ ζSRÞ,
κ ¼ dþ ζSR − 1, while in the MF case we recover the
BGW exponent τ ¼ 3=2. LR avalanches are qualitatively
different from SR ones as they are in general disconnected
objects. An example of an avalanche for α ¼ 1 is shown
in Fig. 1. It is composed of Nc disconnected clusters.
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We denote Sc the size of a given cluster, and lc its
extension. A gap between two clusters is denoted by g.
We define the linear size of the avalanche as l ¼ P

lc.
This length is much shorter than the diameter D of the
avalanche (i.e., the maximal distance between two points
which have moved during the avalanche).
These quantities display power law statistics that are

important to characterize. Indeed, in experiments where the
spatial structure is accessible, independently triggered
avalanches can overlap in time and/or space [36–40] so
that only clusters remain simple to identify.
The first attempt to characterize the cluster statistics of

LR depinning avalanches was done in Ref. [41], where,
based on numerical simulations for α ¼ 1, a scaling relation
for the cluster size exponent was proposed and justified by
arguments that we show to be incorrect. This relation was
experimentally confirmed in Ref. [37] for α ¼ 1. In this
Letter we derive scaling relations for all cluster exponents,
and for all d=2 ≤ α ≤ 2 and show that they depend only on

the roughness exponent ζ (our results are gathered in
Table I). The validity of our relations is based on the
key numerical observation, unveiled here, that the distri-
bution of Nc appears to obey the same statistics as the total
number of descendants in the BGW model.
Let us start by defining the cellular automaton model,

already used in Refs. [40–42], for the simulations of
depinning interfaces. Consider a line (d ¼ 1) uðx; tÞ where
t is the time, x the internal coordinate and u the displace-
ment field (see Fig. 1). We assume that all variables t, x, and
u are integers, that the line size is L and we implement
periodic boundary conditions uðxþ L; tÞ ¼ uðx; tÞ. The
disorder pins the line up to a local threshold force ηth½x; u�
balanced by the force

Fðx; tÞ ¼ m2½w − uðx; tÞ� þ
X
x0

uðx0; tÞ − uðx; tÞ
jx0 − xj1þα ; ð2Þ

where the first term describes the driving force fðx; tÞ ¼
m2½w − uðx; tÞ� deriving from a harmonic confinement of
curvature m2 and the second is the LR elastic force. The
local thresholds ηth½x; u� are independent identically dis-
tributed random numbers drawn from the positive part of a
normal distribution. The harmonic confinement induces
maximal sizes lm ∼m−2=α and Sm ∼ ldþζ

m above which the
power law distributions PðlÞ ∼ l−κ and PðSÞ ∼ S−τ are
truncated. It sets the distance from the critical point
(at m ¼ 0) and corresponds to m2 ∼ 1 − R0 in the BGW
model. At time t if Fðx; tÞ < ηth½x; uðx; tÞ� the point is
stable while if Fðx; tÞ ≥ ηth½x; uðx; tÞ� the point is unstable:
it topples, namely, uðx; tþ 1Þ ¼ uðx; tÞ þ 1, and the new
threshold ηth½x; uþ 1� is drawn. Avalanches are produced
in a quasistatic protocol: when all points are stable w is
increased up to a value at which a first instability occurs
and the dynamics unfolds until the line reaches a new
stable configuration. We focus on the stationary regime of
avalanches, reached after a transient when starting from an
arbitrary configuration. Our simulations are performed for a
line of size L ¼ 217 for α ¼ 0.5, 0.75, 1, and 1.5 and many

FIG. 1. Top: LR (α ¼ 1) avalanche of a front uðxÞ moving
between two stable configurations.The area swept by the line is
the avalanche size S. Bottom: Relative displacement ΔuðxÞ of the
final configuration with respect to the initial one. The avalanche is
made of Nc distinct clusters.

TABLE I. Table of exponents. The measured values correspond to best fits of our data. The predictions correspond to the scaling
relations indicated in the third column [obtained by combining Eqs. (1), (3), (5), and (8)], for d ¼ 1, using the values of ζ listed in the
first line.

measured=prediction

Exponent Expression Relation α ¼ 0.5 α ¼ 0.75 α ¼ 1 α ¼ 1.5

ζ SðqÞ ∼ q−ðdþ2ζÞ 0 (MF) 0.18(1) 0.39 [28] 0.75(2)
γS hNciS ∼ SγS γS ¼ 2 − 2α=ðdþ ζÞ 0.89ð2Þ=1 0.73ð1Þ=0.73ð1Þ 0.52ð2Þ=0.56 0.29ð1Þ=0.28ð2Þ
γl hNcil ∼ Sγl γl ¼ 2ðdþ ζ − αÞ 0.93ð2Þ=1 0.80ð2Þ=0.86ð2Þ 0.70ð2Þ=0.78 0.50ð2Þ=0.54ð4Þ
τ PðSÞ ∼ S−τ τ ¼ 2 − α=ðdþ ζÞ 1.50ð1Þ= 3

2
1.36ð2Þ=1.36ð1Þ 1.26ð2Þ=1.28 1.14ð2Þ=1.14ð1Þ

τc PðScÞ ∼ S−τc τc ¼ 3 − 2α=ðdþ ζÞ 2.00ð9Þ=2 1.72ð4Þ=1.73ð1Þ 1.56ð2Þ=1.56 1.28ð2Þ=1.28ð2Þ
κ PðlÞ ∼ S−κ κ ¼ 1þ dþ ζ − α 1.50ð2Þ= 3

2
1.38ð5Þ=1.43ð1Þ 1.33ð5Þ=1.39 1.20ð3Þ=1.25ð2Þ

κc PðlcÞ ∼ S−κc κc ¼ 1þ 2ðdþ ζ − αÞ 2.05ð5Þ=2 1.90ð5Þ=1.86ð2Þ 1.80ð2Þ=1.78 1.45ð3Þ=1.50ð4Þ
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values of the curvature for each α. The details of the
parameters are given in the Supplemental Material [43].
This model was implemented in Ref. [41] for α ¼ 1 and

the analysis of the data led to conjecture the following
scaling relation for the cluster size exponent τc:

τc ¼ 2τ − 1: ð3Þ

The justification of this relation was based on two
assumptions: (i) During the avalanche spreading the evo-
lution of the number of clusters is interpreted as a discrete
random walk with the time replaced by the number of
topplings. At each time step, the number of clusters can
increase by 1, remain constant, or decrease by 1. This
implies that the average number of clusters at the end of
avalanches of size S (equal to the total number of topplings)
scales as hNciS ∼ SγS . The assumption that the process is
Markovian leads to γS ¼ 1=2. (ii) The clusters belonging to
an avalanche of size S have a typical size Sc ∼ S=hNciS ∼
S1−γS and applying PðScÞdSc ¼ PðSÞdS one finds [44]

τc ¼
τ − γS
1 − γS

; ð4Þ

which yields Eq. (3) for γS ¼ 1=2. In the case α ¼ 1, the
value of γS was found numerically to be compatible with
1=2. In Fig. 2 we extend the study to 1=2 ≤ α < 2. We find
that in general γS ≠ 1=2 and that it decreases continuously
with α. Inserting our measured values of γS in Eq. (4) yields
predictions for τc that differ from the observed values
[e.g., for α ¼ 0.75 we measured γS ¼ 0.73 and τc ¼ 1.72
while Eq. (4) yields τc ¼ 2.33]. Equation (4) is wrong as
the assumption (ii) is incorrect: clusters belonging to

avalanches of size S do not have the same typical size
but are broadly distributed according to a power law
distribution PðScjSÞ ∼ S−τcc for Sc up to S (see inset in
Fig. 2). This implies that hSciS ∼ S2−τc . Using hNciS ¼
S=hSciS we obtain hNciS ∼ Sτc−1 and thus

τc ¼ γS þ 1: ð5Þ

In Fig. 3 we study the statistics of the number of clusters
for different values of α and m2. A collapse for different
values of m2 is obtained by introducing the variable nc ¼
2Nc × hNci=hN2

ci and computing pðncÞ defined as [45,46]

pðncÞdnc ¼
hN2

ci
2hNci2

PðNcÞdNc: ð6Þ

The expression of pðncÞ is known for BGW [47,48]:

pBGWðncÞ ¼
n−3=2c

2
ffiffiffi
π

p expð−nc=4Þ: ð7Þ

The main panel of Fig. 3 presents a remarkable collapse of
the data on the same universal curve for all α and cannot
be clearly distinguished from the BGW function of Eq. (7).
In the case α ¼ 0.5 one expects that the number of clusters
is proportional to the avalanche size (up to logarithmic
corrections). Thus it is not too surprising to recover a BGW
shape in this case, since, in mean field, this is the
distribution of the avalanche size. It is, however, much
less clear why this behavior should hold for α > 0.5.
Numerically we cannot exclude that pðncÞ is BGW

FIG. 2. Main panel: hNciS versus S for α ¼ 0.5, 0.75, 1, and 1.5
(top to bottom). Dashed lines fit the exponent γS, values listed in
Table I. Inset: PðScjSÞ for S ¼ 103 (circles) and S ¼ 105

(triangles). Dashed lines correspond to the exponents τc of
PðScÞ measured in the Supplemental Material [43]. (Data are
shifted vertically.)

FIG. 3. Main panel: pðncÞ for α ¼ 0.5, 0.75, 1, and 1.5. The
thin gray line corresponds to pBGW (7). Inset: Direct measure-
ments of τc (blue squares) compared with (i) the prediction (4)
using the fitted values of γS (red circles); (ii) our prediction of τc
as a function of ζ (see Table I) using FRG predictions ζ1loop

[32,33] (bottom line) and ζ2loop [33] (upper line) given in the
Supplemental Material [43].

PHYSICAL REVIEW LETTERS 126, 025702 (2021)

025702-3



(in the limit m → 0, L → ∞) also for α ¼ 0.75, α ¼ 1 and
α ¼ 1.5. However, for what follows we need only to
assume that PðNcÞ ∼ N−3=2

c and we do not mind about
the exact decay at large scale. To conclude the argument it
is sufficient to remark that PðNcÞdNc ¼ PðSÞdS (see
Supplemental Material [43] for an equivalent derivation)
which yields γS ¼ 2ðτ − 1Þ. Combined with the relation
(5), we arrive at the scaling relation (3) which we thus find
to be valid for all α, by a completely different mechanism
from Ref. [41]. Note that we can also infer that the cutoff of
PðNcÞ scales as Nm ∼ Sτc−1m .
The same reasoning can be repeated to find the relation

between the extension l of an avalanche and the extension
lc of the clusters. Using the definition for γl, hNcil ∼ lγl ,
we first derive the relation γl ¼ κc − 1. Then using
PðNcÞ ∼ N−3=2

c and PðNcÞdNc ¼ PðlÞdl we derive

κc ¼ 2κ − 1: ð8Þ

Note that from γS ¼ τc − 1, γl ¼ κc − 1 and N1=γS
c ∼ S ∼

ldþζ ∼ NðdþζÞ=γl
c we deduce κc − 1 ¼ ðτc − 1Þðdþ ζÞ.

This corresponds to the self-affinity of the clusters Sc ∼
ldþζ
c which is checked in the Supplemental Material [43].
The scaling relations that we have derived allow us to

express all the exponents as functions of ζ and α. We have
collected all these expressions in Table I and compared the
predicted values of the exponents with the ones directly
measured in our numerical simulations. We found good
agreements for all values of α.
Note that at variance with SR elasticity the diameter D

does not coincide with the avalanche linear size l but is in
general much larger. Therefore it displays novel statistical
properties that we should characterize. In Fig. 4 we show
the diameter distribution for α ¼ 0.5, 1, and 1.5. For
α > 0.5 a crossover Dcross ∼ lm separates two power law
decays:

PðDÞ ∼
�
D−κD for D ≪ Dcross;

D−ðdþαÞ for D ≫ Dcross:
ð9Þ

Remarkably, the exponent κD is α independent with a
numerical value close to 1.2 (also for α ¼ 0.5) in d ¼ 1.
The decay for D ≫ Dcross originates from the LR elasticity
and should hold for any d. The statistics of the diameter is
very different from the one of the linear size l. Since
D ¼ lþG, where G ¼ P

g is the total gap, we need to
investigate the statistics of the gaps g in order to understand
the statistics of the diameter. Their distributions, shown in
the inset of Fig. 4, present a crossover gcross ≃ 10lm
between two power law decays:

PðgÞ ∼
�
g−κg for g ≪ gcross;

g−ðdþαÞ for g ≫ gcross;
ð10Þ

with κg ¼ 3=2 independently from α. Since the decay of
PðgÞ is much slower than the one of PðlcÞ (which decays
faster than any power law at large scale, see Supplemental
Material [43]), we expectG ≫ lwhich implies thatD ≃G.
This latter relation is confirmed by Fig. 4 where the
distribution of D and G are plotted together and are
indistinguishable.
The scaling form (9) can now be derived from the gap

distribution (10). Let us first consider avalanches where all
gaps are below gcross. In this case we can write

hNciG ¼ 1þ G
hgiG

∼Gκg−1 ≃Dκg−1; ð11Þ

where we used hgiG ∼G2−κg since PðgjGÞ ∼ g−κg for g
up to G (see Supplemental Material [43]). Again using
PðNcÞ ∼ N−3=2

c and setting PðNcÞdNc ¼ PðDÞdD we find

κD ¼ ðκg þ 1Þ=2 ≃ 1.25; ð12Þ

which is close from the exponent we measure κD ≃ 1.2.
For very large D, we assume the existence of a gap
g ∼D ≫ gcross. This gap has a probability ∝ g−ðdþαÞ lead-
ing to the tail ∝ D−ðdþαÞ.
The main result of this Letter is to show that, even in

presence of LR interactions, the statistical properties of
depinning avalanches can always be expressed as functions
of α and ζ. Our conclusions are based on the numerical
observation that the number of clusters behave as the
number of offspring of a BGWmodel for all α between 1=2
and 2. We are not able to demonstrate this conjecture but
our numerics shows that it is a very good approximation.
All relations between the exponents of clusters and global

FIG. 4. Main panel: Diameter (circles) and total gap length
(squares) distributions for α ¼ 0.5, 1, and 1.5. We used
lm ¼ m−2=α. Dashed lines are fits with exponents κD ¼ 1.2 at
small scales and dþ α at large scales for α ¼ 1 and 1.5. Inset:
Gap distributions. The dashed lines are guides to the eye for
exponents κg ¼ 3=2 at small scale and dþ α at large scale.
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avalanches are based on this conjecture so it would be of
great interest to show it analytically. PðNcÞ can also be
studied experimentally thanks to a new method introduced
in Ref. [22]. These relations have been tested in d ¼ 1 but
we believe that they also hold for d > 1. It would be also
interesting to characterize the statistical properties of the
clusters of plastic avalanches [5,6,49,50]. Indeed the
Eshelby kernel, which is the relevant interaction for
the yielding transition, is long-range (with α ¼ 0) but, in
contrast with depinning, nonmonotonous.
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