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Recently achieved two-component dipolar Bose-Einstein condensates open exciting possibilities for the
study of mixtures of ultradilute quantum liquids. While nondipolar self-bound (without external
confinement) mixtures are necessarily miscible with an approximately fixed ratio between the two
densities, the density ratio for the dipolar case is free. Therefore, self-bound dipolar mixtures present
qualitatively novel and much richer physics, characterized by three possible ground-state phases: miscible,
symmetric immiscible, and asymmetric immiscible, which may in principle occur at any population
imbalance. Self-bound immiscible droplets are possible due to mutual nonlocal intercomponent attraction,
which results in the formation of a droplet molecule. Moreover, our analysis of the impurity regime shows
that quantum fluctuations in the majority component crucially modify the miscibility of impurities. Our
work opens intriguing perspectives for the exploration of spinor physics in ultradilute liquids, which should
resemble to some extent that of 4He–3He droplets and impurity-doped helium droplets.
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Introduction.—Helium droplets have been a major focus
for many years [1–4]. They remain liquid at low pressures
and even at zero temperature, constituting an extraordinary
scenario for the study of superfluidity down to nanoscopic
scales [5]. Interestingly, helium has two stable isotopes,
bosonic 4He and fermionic 3He, allowing for self-bound
droplet mixtures. Under a typical experimentally achiev-
able temperature of 0.15K, 4He is a superfluid, whereas 3He
remains a normal fluid [6]. Moreover, due to its smaller
mass and limited solubility in 4He, 3He resides at the droplet
surface surrounding the 4He component [3]. Droplets
of helium mixtures are hence characteristically phase
separated in a core-shell structure, although droplets under
rotation may display more intricate distributions [7].
Helium droplets can also be doped with other elements
or molecules, which may remain at the surface or sink to the
core. These crucial properties have been extensively
explored, both in what concerns the use of embedded
dopants to prove superfluidity [5], and helium-nanodroplet
spectroscopy, i.e., the use of the pristine low-temperature
environment provided by the helium droplet for spectro-
scopic studies of impurities [8–11].
Helium droplets constituted up until very recently the only

example of a self-bound quantum liquid, confined in the
absence of external trapping. New developments in the field
of ultracold atoms have, however, changed this picture.
Quantum droplets have been observed both in dipolar Bose-
Einstein condensates (BECs) made of highly magnetic
lanthanide atoms [12–14], and in binary (nondipolar) homo-
nuclear [15,16] and heteronuclear [17] Bose mixtures.
Strikingly, these droplets are orders of magnitude more
dilute than Helium droplets. They are kept self-bound by a

mechanism known as quantum stabilization [18]: an almost
complete cancellation of the various mean-field forces
results in a small residual attraction which is compensated
by the repulsive Lee-Huang-Yang (LHY) energy induced by
quantum fluctuations. In a dipolar BEC, the mean-field
forces are given by the dipolar and contact interactions [19],
whereas in nondipolar binary mixtures a similar role is
played by inter- and intracomponent interactions [18].
The recently observed, ultradilute self-bound mixtures

differ in a crucial way to helium droplet mixtures: they must
remain miscible. Moreover, to a good approximation such
ultradilute droplets must keep a fixed ratio between the
particle number in each component, and deviations from
this ratio are evaporated before the droplet sets in. As a
result, the spin degree of freedom (i.e., the population
difference) remains to a large extent frozen, and the mixture
behaves as a single-component BEC [18]. Bose-Fermi
mixtures must remain miscible as well [20].
In this Letter, we show that recently realized mixtures of

two dipolar species [21,22] open new perspectives for the
study of self-bound mixtures in which the spin degree of
freedom is genuinely free. Self-bound dipolar mixtures may
be miscible but, crucially, also immiscible (Fig. 1). In the
latter scenario, which to the best of our knowledge is unique
to dipolar mixtures, the two components phase separate
while still being self-bound due to the interplay between
quantum stabilization and intercomponent dipole-dipole
attraction. Moreover, in contrast to experimentally achieved
3He–4He droplets, both components should remain super-
fluid in Bose droplet mixtures under typical experimental
conditions. We identify three different ground-state phases
for self-bound dipolar mixtures: miscible, symmetric
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immiscible, and asymmetric immiscible. In contrast to
nondipolar mixtures, droplets with any population imbalance
(polarization) are possible, all the way from the fully
balanced case to the impurity limit [23]. We show that
impurity solubility in a dipolar droplet is crucially affected
by quantum fluctuations in the majority component.
Although we illustrate the possible physics for the case of
Dy-Dy mixtures [24], the qualitative features are generally
valid for other dipolar mixtures (in particular Er-Dy [21,22]),
opening intriguing perspectives for the study of spinor
physics and impurities in ultradilute dipolar liquids.
LHY energy.—We first consider a homogeneous binary

condensate of components σ ¼ a, b, with densities nσ,
characterized by the intracomponent scattering lengths aσσ,
the intercomponent scattering length aab, and the magnetic
dipole moments μσ (our theory is equally valid for electric
dipoles). All dipole moments are oriented by an external
field along the same direction, z. For simplicity we consider
equal masses ma;b ¼ m, although the formalism can be
easily extended to unequal masses (for the experimentally
relevant Er-Dy mixtures [21], the masses are approxi-
mately equal).
Using Hugenholz-Pines formalism [25,26], we obtain the

equation for the LHY energy density correction, ϵLHY [27]:
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1

2
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∂
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where ξ�ðk⃗Þ ¼ ½EðkÞðEðkÞ þ V�ðθkÞÞ�1=2 are the
Bogoliubov modes of the mixture, EðkÞ ¼ ℏ2k2=2m, and
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Above, θk is the angle between k⃗ and the dipole
moments, ησσ0 ðcosθkÞ¼gσσ0þgdσσ0 ð3cos2θk−1Þ, with gσσ0 ¼
4πℏ2aσσ0=m, gdσσ0 ¼ μ0μσμσ0=3 ¼ 4πℏ2adσσ0=m, and μ0
is the vacuum permeability. The solution of Eq. (1) is given
by [29]
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which converges for na ¼ 0 or nb ¼ 0 to the expression for a
single-component dipolar BEC [33] and for μa;b ¼ 0 to that
for a nondipolar mixture [18] (see [26]).
From the form of V�ðθkÞ it is easy to see that

ϵLHY ¼ n5=2FðPÞ, where n ¼ na þ nb and F is a function
of the polarization P ¼ nb=na. A similar form occurs as well
in nondipolar binary mixtures. However, for the latter, P is
homogeneously fixed at approximately ðgaa=gbbÞ1=2 in the
self-bound regime [18]. Nondipolar self-bound mixtures are
hence necessarily miscible, the LHYenergy just depends on
the total density, and the system is well approximated by an
effective single-component model [18]. In contrast, as
discussed below, in a dipolar mixture the polarization is
neither fixed nor homogeneous, resulting in rich spinor
physics, including the possibility of immiscible droplets. The
problem is thus inherently a two-component one. In par-
ticular, the LHYenergy is a function of the local densities of
both components, and not only of the total density.
Formalism.—We are interested in the ground state

of self-bound dipolar mixtures. From Eq. (4), we
evaluate the LHY contribution to the chemical potentials,
μðσÞLHYðfna;bgÞ ¼ ∂ϵLHY=∂nσ . As with single-component
dipolar BECs [19] and nondipolar mixtures [18], we study
spatially inhomogeneous dipolar mixtures by applying a
local-density approximation (LDA) [34] to the LHY term,
μðσÞLHY½fna;bðr⃗Þg�, obtaining two coupled Gross-Pitaevskii
(GP) equations which incorporate the effect of quantum
fluctuations:

iℏ
∂
∂tψσðr⃗Þ ¼

�
−ℏ2∇2

2m
ψσðr⃗Þ þ

Z
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þ
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σ0
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�
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ð5Þ
where nσðr⃗Þ≡ jψσðr⃗Þj2 and Vσσ0 ðr⃗Þ ¼ ½ðμ0μσμσ0 Þ=
4πr3�ð1 − 3cos2θÞ, with θ the angle between r⃗ and the
dipole moments.

FIG. 1. Ground-state phase diagram for Dy-Dy mixtures—in
the absence of external confinement—with aaa ¼ abb ¼ 70a0
and Na ¼ Nb ¼ N=2 as a function of total particle number N and
aab. The shaded regions indicate self-bound droplet solutions,
whereas below these the solutions are unbound. The dashed curve
indicates the prediction obtained using the Gaussian Ansatz (6).
The insets show isodensity surface examples for (a) a miscible
and (b) an asymmetric immiscible self-bound droplet.
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In addition to numerically intensive 3D simulations of
Eqs. (5), we employ a simple variational approximation in
the miscible regime using a Gaussian Anstatz:

ψσðr⃗; lρ; lzÞ ¼
�

Nσ

π3=2l2ρlz

�
1=2

e−1=2ðρ2=l2ρþz2=l2zÞ; ð6Þ

where lρ:z are determined from energy minimization [26].
Ansatz (6) is, however, inappropriate for immiscible
droplets (see [26] for an alternative ansatz in that regime).
Impurity limit.—The limit Nb ≪ Na transparently illus-

trates the possible ground states of a dipolar mixture. The
majority component is to a first approximation a single-
component dipolar BEC, which remains self-bound for
sufficiently large Na and low aaa=adaa [14,35,36]. Within
the self-bound regime, the minority component experiences
an effective potential induced by the majority component:

μabðr⃗Þ≃gabnaðr⃗Þþ
Z

d3r0Vabðr⃗− r⃗0Þnaðr⃗0Þþγabnaðr⃗Þ3=2;

ð7Þ

where γab¼ð32=3 ffiffiffi
π

p Þðm=4πℏ2Þ3=2R 1
0 duηaaðuÞ1=2ηabðuÞ2.

The last term in Eq. (7) is the zero-momentum beyond-
mean-field correction of the polaron energy resulting from
the interaction of the impurity with the elementary exci-
tations of the majority component. This repulsive term is
crucial for the miscibility of the mixture. It favors immis-
cibility, reducing the critical aab by tens of a0. Take the
example of Na ¼ 1270, Nb → 0, and aaa ¼ 70a0. When
γab is properly included we find that immiscibility occurs at
aab ≃ 75a0, whereas excluding γab pushes the immiscibil-
ity threshold up to aab ≃ 115a0.
Dipolar attraction dominates for small-enough gab > 0,

resulting in a minimum of μabðr⃗Þ at the droplet center, see
Fig. 2(a). Component b then remains within the droplet and
the mixture is miscible. In contrast, for large-enough gab,
μabðr⃗Þ develops a maximum at the droplet center [Figs. 2(b)
and 2(c)]. In the absence of dipolar interactions the
minority component would be ejected. However, crucially,
the partially attractive and long-range character of the
dipolar interaction results in two potential minima, along
the dipole direction, z, which extend outside the a droplet
[Figs. 2(b) and 2(c)]. With increasing gab, component b is
pushed away from the droplet center, first developing two
μabðr⃗Þ minima while still miscible, and is eventually
positioned outside component a in complete immiscibility.
A sufficiently large gbb > 0 favors an equal occupation
of both minima [Fig. 2(c)], whereas for smaller gbb
the b component will be biased towards one of the
minima, spontaneously breaking the discrete Z2 symmetry
[Fig. 2(b)]. As shown below, although the energy scales
interplay differently for more balanced populations, the
same three self-bound ground states still occur: miscible,
symmetric immiscible, and asymmetric immiscible.

Self-bound miscible and immiscible droplets.—Figures 1
and 3 summarize our GP results of the ground-state
physics for a Dy-Dy mixture (adaa;bb ¼ 129.2a0, with a0
the Bohr radius) for equal intracomponent interactions,
aaa;bb ¼ 70a0. Figure 1 shows the phase diagram for a fully
balanced mixture (Na;b ¼ N=2), as a function of the total
particle number N and aab. The self-bound–unbound
transition is marked by a solid curve. Within the self-
bound regime, the system experiences an abrupt phase
transition (dotted line) from a miscible regime at low aab
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FIG. 2. Effective potential μabðx; y ¼ 0; zÞ (arb. unit) experi-
enced in the impurity limit by the minority component in
(a) miscible, (b) asymmetric immiscible, and (c) symmetric
immiscible regimes. The majority component (Na ¼ 2000) is
represented by a black density contour, while the impurity
component (Nb ¼ 20) contour is white-black dotted; both are
drawn at 10% of the respective peak densities.

FIG. 3. Instability threshold as a function of particle number in
each component for a Dy-Dy mixture with aaa ¼ abb ¼ 70a0,
and aab ¼ 50a0, 70a0, and 90a0. The mixture remains self-bound
for the parameter region above the curves. The inset shows the
results obtained using the variational ansatz (6) for aab ¼ 50a0
and 70a0. The subplots show the 3D probability contour for the a
(red) and b (blue) component, drawn at 10% of the respective
peak densities.
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[see Fig. 1(a)] to an asymmetric immiscible regime for
large aab [Fig. 1(b)]. For the particular case of Figs. 1 and 3,
where the intracomponent interactions and the dipole
moments are equal, the miscible-immiscible threshold is
approximately independent of the number of atoms. In
more general cases, as illustrated below, the transition may
be driven by changing the particle number.
While in the impurity limit the droplet stability only

depends on the intracomponent interactions of the majority
component, independently of the miscibility or immiscibil-
ity of the mixture, in the balanced case there is a marked
interplay between droplet stability and miscibility. When
decreasing aab into the miscible regime, the droplet
becomes significantly more stable. In particular, the critical
total number of particles for self-binding falls considerably,
see Fig. 1. The dashed line in the figure shows the
instability boundary predicted by the Gaussian ansatz
(6), which reproduces well the GP results within the
miscible regime.
The instability threshold presents a marked dependence

on the polarization Na=Nb of the mixture. In Fig. 3, we
depict the stability threshold as a function ofNa andNb, for
aab ¼ 50a0, 70a0, and 90a0 for the same case as Fig. 1. In
the impurity limit, as mentioned above, the stability does
not depend on aab and all curves converge to the critical
number for a single component. Deep within the miscible
regime (aab ¼ 50a0), balanced droplets have a much lower
critical total number, Ncr, for stability compared to the
single-component case. For aab ¼ 50a0, Ncr ≃ 700 for
Na ¼ Nb, i.e., just 350 particles in each component,
whereas Ncr ≃ 1270 for Na ¼ 0 or Nb ¼ 0, showing that
the mutual confinement strongly reinforces self-binding.
In the immiscible regime, a droplet molecule forms, i.e.,

a self-bound solution of two attached droplets. The repul-
sion resulting from the intercomponent mean-field contact
term and the LHY energy [37] results in phase separation.
For the particular cases in Figs. 1 and 3, this separation is
always asymmetric, see Fig. 1(b) and Fig. 3(a) [the latter
should be compared to Fig. 2(b) in the impurity limit]. In
more general scenarios, as illustrated below, the interplay
between intra- and intercomponent interactions may favor a
symmetric configuration with two domain walls [as in
Fig. 2(c) in the impurity limit]. In any case, as in the
impurity limit, the droplets remain attached despite their
phase separation due to the intercomponent dipole-dipole
interactions. Each component creates at its borders (and
beyond) an attractive potential pocket in which the other
component is trapped, leading to mutual attachment. The
attractive interactions exerted by the other component lead
not only to attachment but also to reinforced stability. As
shown in Fig. 3, for the immiscible regime (aab ¼ 90a0), in
contrast to the miscible case,Ncr grows when the mixture is
more balanced (Ncr ≃ 1500 for Na ¼ Nb). Even so, only
Na;b ¼ 750 particles in each component are necessary for
self-binding—compared to ≃1270 in the single-component

case—showing that despite phase separation, the mutual
attachment allows for the stabilization of two droplets that
would be individually unstable. The instability threshold
flattens within the immiscible regime (Fig. 1), due to the
drastic reduction of the intercomponent overlapping, but
the non-negligible dependence on aab shows that the width
of the domain wall remains finite.
While the cases considered above display a miscible-

to-asymmetric immiscible transition, an immiscible-
immiscible transition may also occur between a symmetric
and asymmetric configuration, as illustrated in Fig. 4,
where we consider Na ¼ Nb ¼ 2000, aab ¼ 85a0, and
ðaaa þ abbÞ=2 ¼ 70a0. This figure shows that the popula-
tion distribution may be changed not only by modifying aab
but also by changing the ratio aaa=abb. While for aaa ¼ abb
the asymmetric configuration has a lower energy compared
to the symmetric one, the symmetric configuration
becomes the ground state at a critical abb − aaa, marking
the onset of a first-order phase transition. The symmetric
immiscible solution can be the ground state—overcoming
the cost of two domain walls—because the component with
the smaller intraspecies contact interactions forms a
narrower droplet (see Fig. 4 insets). Not only does this
reduce its internal dipolar energy, it also creates deeper
attractive potential pockets at both ends, within which the
second component can equally divide itself to minimize
energy.
Finally, the symmetric immiscible configuration may

crossover to a miscible phase, as illustrated in Fig. 5,
where we consider ðaaa; aab; abbÞ=a0 ¼ ð65; 70; 75Þ. We
monitor the crossover by considering the contrast,
Δ≡ jna0=nam − nb0=nbmj, where nσm is the maximal
density of component σ, and nσ0 is its density at the
droplet center [38]. The system undergoes a symmetric

FIG. 4. Asymmetric immiscible-to-symmetric immiscible tran-
sition. Energy of the symmetric (dashed) and asymmetric (solid)
immiscible phase as a function of ðabb − aaaÞ for aab ¼ 85a0 and
Na;b ¼ 2000. The subplots show 3D contours for the a (red) and
b (blue) components, drawn at 5% of the respective peak
densities.
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immiscible-to-miscible crossover whenNb=Na grows. This
is because in the impurity limit, Nb → 0, ðaaa; aabÞ=a0 ¼
ð65; 70Þ leads to an immiscible mixture [cf. Fig. 2(c)],
whereas for Na → 0, ðaab; abbÞ=a0 ¼ ð70; 75Þ results in
miscibility. Note that component a always remains at the
center since aaa is the lowest. Furthermore, we should point
out that more generally all possible transitions discussed in
this paper can occur as a function of the polarization. This
opens the possibility of an intriguing scenario. In typical
mixture experiments, three-body losses are larger in one of
the two components [15,16]. While for nondipolar mixtures
losses in one component leads to the unraveling of the
whole self-bound mixture [15,16], in dipolar mixtures
losses may instead result in a loss-induced miscible-
immiscible crossover or transition.
Conclusions.—While nondipolar Bose mixtures are

necessarily miscible with approximately fixed polarization,
dipolar Bose mixtures present a rich array of spinor
physics, and in particular may undergo a miscible-
immiscible transition. We have shown that self-bound
mixtures may be in three different ground states: a miscible
droplet, and immiscible droplet “molecules”—in either a
symmetric or asymmetric configuration—and we illus-
trated the different phase transitions and crossovers
between these phases. We also discussed the impurity
limit, in which beyond mean-field corrections of the
polaron energy play a crucial role in the miscibility of
the mixture. Dipolar mixtures free the spinor physics of
self-bound ultradilute liquids, opening exciting perspec-
tives for the study of ultracold superfluid-superfluid
mixtures—exhibiting similar physics to that of 4He–3He
droplets and much more, including the dynamics of super-
fluid-superfluid droplets (e.g., under rotation [7]), probing
superfluidity of one component by another, polaron physics
in low-dimensional dipolar mixtures [39], loss-induced
miscibility transitions, Bose-Fermi droplets, and super-
solid-supersolid mixtures.
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Note added.—After the completion of this work, we
became aware of a related work [40], whose results are
compatible and complementary to ours.
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