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Near-resonant energy transfer to large-scale stable modes is shown to reduce transport above the linear
critical gradient, contributing to the onset of transport at higher gradients. This is demonstrated for a
threshold fluid theory of ion temperature gradient turbulence based on zonal-flow-catalyzed transfer. The
heat flux is suppressed above the critical gradient by resonance in the triplet correlation time, a condition
enforced by the wave numbers of the interaction of the unstable mode, zonal flow, and stable mode.
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Turbulence-driven transport arises from the density and
temperature gradients of confined plasmas, and has long
impeded the realization of fusion power [1]. While it has
been possible in some cases to improve confinement
without thoroughly understanding the physics of the
turbulence that limits it, for example with sheared equi-
librium flows [2], fully understanding turbulence could
open new strategies for improving confinement, including
transport control through externally manipulated barriers
[3,4] and 3D field optimization [5]. Much effort relating to
turbulence has centered on identifying and understanding
its driving instabilities. Beyond the drive, one may treat
linear growth rates as a proxy for turbulence levels and
turbulent fluxes, yielding reduced transport models and
control strategies based on linear drive physics [6–8].
One notable situation where transport and instability

growth rate have distinct behaviors is the critical-gradient
upshift of the heat flux of ion temperature gradient (ITG)
turbulence. A well known but poorly understood feature
first noted in gyrokinetic simulations, this phenomenon,
which is often referred to as the Dimits shift, is seen as the
onset of transport at a noticeably higher driving gradient
than that of linear instability [9]. This critical-gradient
upshift is of interest not just because the onset of transport
at a higher driving gradient represents a form of transport
reduction, but because it exposes a crucial piece of
nonlinear saturation physics relevant to a variety of issues
[5,10].
Identifying the mechanism of the critical-gradient upshift

has proved elusive. Transport suppression by the shearing
of zonal flows is often invoked [11–13]. Zonal flows are the
ky ¼ 0 component of the turbulent flow; the rate at which
they shear eddies to a flow-wise correlation length is
referred to as the E × B shearing rate [2]. In the original
observation of the critical-gradient upshift, it was noted that
the E × B shearing rate exceeds the growth rate in the

region of very low transport [above the linear instability
threshold but below the nonlinear critical gradient (NLCG)]
[9]. This idea was further developed in the notions of
tertiary instability [14] and critical onset of strong nonlinear
energy transfer from zonal flows [15], whose coincidence
with the NLCG is argued to interfere with zonal flow
shearing. We show that this picture is inconsistent with
observations in gyrokinetic simulations of ITG turbulence.
Recent work exploring finite-amplitude-induced changes in
electron drift-wave turbulence from the inhomogeneity of
zonal flows expands investigation of the relation between
flow and turbulence [16,17], but is not directly applicable to
the ITG threshold.
The principal result of this Letter is an analytic theory for

the heat flux based on an extension of ITG fluid saturation
theory [18] to include the instability threshold. The
calculation requires a more rigorous saturation analysis
to account for a finite wave number range and the partition
of energy between eigenmodes. We show that the ion heat
flux is weakened above the linear critical gradient by near-
resonant energy transfer between the instability, the zonal
flow, and a conjugate stable mode. Resonance broadening
by eddy damping and mode dispersion from the ion
polarization drift expose gradient scalings that cancel in
the nonbroadened resonance, allowing the flux to rise more
sharply at steeper gradients. This mechanism, which
captures key aspects of the critical-gradient upshift, has
not been considered in prior theories.
The key aspects just mentioned are uncovered in the

behavior of nonlinear energy transfer above and below the
NLCG in gyrokinetic ITG turbulence, where the critical
gradient phenomenon was first observed. Figure 1 shows
the time rate of change of energy carried conservatively
between spatial scales by turbulence for GENE [19] gyro-
kinetic flux-tube simulations at cyclone-base-case (CBC)
parameters [9] with adiabatic electrons using two values of
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the temperature gradient ωTi ¼ −ðR=Ti0ÞðdTi0=dxÞ, where
R is the major radius, Ti0 (Te0) is the equilibrium ion
(electron) temperature, and x is the radial coordinate.
Linear instability occurs above ωTi ¼ 4.75 and the
NLCG is ωTi ¼ 6.75. In Fig. 1(a) for ωTi ¼ 5.5, colors
indicate the time averaged energy transfer rate to a
sequence of stable modes at successively higher kx from
the interaction of streamers (0, ky) with a single zonal flow
(0.086, 0). Here kx is the radial wave number and ky is the
wave number perpendicular to kx and the magnetic field.
Both are normalized to the ion sound gyroradius ρs.
Unstable modes at higher kx receive less energy by an
order of magnitude. In Fig. 1(b) for ωTi ¼ 7.0, the
interacting zonal flow is (0.04, 0). A second set of
measurements of transfer from streamers to all coupled
wave numbers indicates that for both gradient values,
coupling with a zonal flow dominates. In comparing (a)
and (b), energy transfer is larger above the NLCG, con-
sistent with higher turbulence levels, and is therefore able to
push to somewhat higher kx. The energy transfer process
appears to be qualitatively the same, and is consistent with
transfer from unstable modes to stable modes through the
zonal flow. This is referred to as the zonal-flow-catalyzed
energy transfer channel.
Figure 2 shows the ratio of the E × B shearing rate to the

linear growth rate as a function of ωTi. The NLCG is shown
as the dashed line. E × B shearing by the zonal flow is
important below the NLCG because the ratio is greater than
unity, as noted in Ref. [9]. However, as the turbulent
amplitudes rise above the NLCG the ratio becomes larger.
This is inconsistent with the notion that a breakdown of
shear suppression causes the rising heat flux above the
NLCG. It is consistent with the relatively stronger zonal-
flow-catalyzed energy transfer channel evident in Fig. 1(b),
while indicating that the zonal flow nonetheless remains the
dominant energy transfer channel below the NLCG. Note
that zonal-flow catalyzed energy transfer is a straining
process of the zonal flow and thus proportional to the
flow shear.
These observations indicate that there is a single satu-

ration process—zonal-flow-catalyzed energy transfer—
which is highly efficient just above the linear critical
gradient (yielding low fluxes) and less so as gradients

increase. ITG saturation theory for zonal-flow-catalyzed
transfer [18], when modified to include instability threshold
physics, produces precisely this behavior. We start with a
simplified gyrokinetic linear instability calculation [20]
and adapt it to the nonlinear fluid model. The calculation
retains gyrokinetic ions, but treats the grad-B and curvature
drifts nonresonantly, expanding the kinetic propagator for
large frequency relative to the magnetic frequency.
Parallel streaming and ion polarization effects are
neglected. Calculating ñi from the ion distribution
function, and using quasineutrality with an adiabatic elec-
tron density, we obtain the complex mode frequency

ω¼ωd�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
d−ðTi0=Te0Þð2ωdω̄�η−7ω2

d

q
Þ. Here ωd ¼

−kyρsCs=R, ω̄�η ¼ ω�ð1þ ηÞ ¼ −kyρsCsð1=LT þ 1=LnÞ,
LT and Ln are ion temperature and density gradient scale
lengths, and Cs is the sound speed. Instability requires that
ω̄�η exceed a threshold, i.e., ω̄�η > ðωd=2Þð7þ Te0=Ti0Þ.
For LT ≪ Ln (η ≫ 1) this corresponds to a critical gradient
given by 1=LT > 1=LTc ¼ ð1=2RÞð7þ Te0=Ti0Þ. Lack of
dispersion produces a resonant interaction between the
unstable ITG mode, its conjugate pair, and the zonal flow.
For resonance the heat flux is essentially zero. It is
broadened by ion polarization, leading to a small finite flux.
The reduced nonlinear model to which the linear thresh-

old calculation will be adapted was previously used for
saturation well above the threshold [18]. The model [21]
reproduces important features of gyrokinetic simulations
[15,22], including the dominance of the zonal-flow-cata-
lyzed energy transfer channel. Its quadratic dispersion
relation allows the threshold dispersion to be reproduced
with minor changes; it does not have the large number of
stable modes of gyrokinetics. The analytic solution
involves zonal-flow damping, making it unable to replicate
collisionless physics.
The nonlinear model couples ion pressure p and

potential ϕ given by dpk=dtþ Z11pk þ Z12ϕk ¼ Np and
dϕk=dtþ Z21pk þ Z22ϕk ¼ Nϕ, where Zij are the linear
coupling coefficients defined in Table I for the fluid model

FIG. 1. Rates of spectral energy transfer in gyrokinetic ITG
turbulence. In (a) ωTi ¼ 5.5, above the linear threshold of 4.75
but below the NLCG of 6.75. In (b) ωTi ¼ 7.0.

FIG. 2. Ratio of E × B shearing rate to linear growth rate in
gyrokinetic ITG turbulence for an ωTi scan. The dashed line is the
NLCG.
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of Ref. [21] and the modified model that matches the
threshold dispersion; the nonlinearities are Np¼−

P
k0k

0×
ẑ·kϕk0pk00 andNϕ¼ð1=2ÞPk0 k

0× ẑ ·kðk02⊥−k002⊥ Þϕk0ϕk00 ; ẑ
is the unit vector along the field, k¼ðkx;kyÞ, k2⊥ ¼ k2x þ k2y,
and k00 ≡ k − k0 label coupled wave vectors. Flow damping
ν and a thermal diffusivity χ have been added as in
Ref. [15]. Both the original and modified models include

the ion polarization drift, leading to factors ð1þ k2⊥Þ−1 in
Z21 and Z22. As in Refs. [15,21], Te0 ¼ Ti0, and the parallel
length scale is normalized to Ln, rendering ωd as kyϵ ≡
kyLn=R. The threshold model differs from the original
primarily by inclusion in the pressure equation of a term
∝ iωdp. Assuming the extra factor of k2⊥ makes χk2⊥ ≪ ν,
the complex mode frequency of the threshold fluid model is

ω1;2 ¼
ϵky½2þ ð1þ ffiffiffi

8
p Þk2⊥� þ ky − iνk2⊥

2ð1þ k2⊥Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8ϵk2yð1þ ηÞð1þ k2⊥Þ þ ½ϵkyð2

ffiffiffi
8

p þ ð1þ ffiffiffi
8

p Þk2⊥Þ − ky þ iνk2⊥�2
q

2ð1þ k2⊥Þ
; ð1Þ

where the subscript 1(2) labels the unstable (stable)
branch, selected by þð−Þ in �. With kyð1þηÞ¼ω�η∼1,
ϵky ¼ ωd ∼ 1, and taking ky, k2⊥ ≪ 1, this expression
exactly matches the threshold frequency for Te0 ¼ Ti0.
Hereafter we use the threshold fluid model and the notation
of Table 1, retaining finite k2⊥ in Zij because it broadens the
mode coupling resonance.
The ion heat flux is an ensemble average of the product

of fluctuations p and ϕ, Qi ¼ −
P

k0 k
0
yImhϕ−k0pk0 i. We

introduce the eigenmode decomposition, pk0 ¼R0
1β

0
1þR0

2β
0
2

and ϕk0 ¼ β01 þ β02, where R0
j and β0j are eigenvector

components and amplitudes, and quantities with primes
are evaluated at k0. The flux is then given by Qi ¼
−

P
k0 k

0
y½ImR0

1hjβ01j2i þ ImR0
2hjβ02j2i þ ImðR0

1 þ R0
2Þ

Rehβ01β0�2 i þ ReðR0
1 − R0

2ÞImhβ01β0�2 i�. From the eigen-
frequencies we obtain R0

j¼½−ω0
jð1þk02⊥Þþk0yð1þϵð1−

ffiffiffi
8

p ÞÞ−
iνk02⊥�=2k0yϵ, where ω0

j is the jth eigenfrequency at k0.
Above the linear threshold ReðR0

1 − R0
2Þ ¼ 0 and

ImðR0
1 þ R0

2Þ ¼ −3νk02⊥=2k0yϵ. The ratios of eigenmode
amplitudes can be solved from the balances of the satu-
ration theory [18], and reduce to ratios of the linear
eigenmode frequencies and nonlinear coupling coefficients.
The latter also reduce to functions of eigenmode
frequencies.
We evaluate Qi in terms of the stable fraction

κ ≡ jβ02j2=jβ01j2. We can thus write β02 ¼ β01
ffiffiffi
κ

p
expðiθÞ,

where θ is the cross phase between β01 and β02. The cross
correlation becomes hβ0�1 β02i ¼ jβ01j2κ1=2 expðiθÞ. From the

eigenvector components and the above ratios, we find
Qi ¼

P
k0 ðγ0=2ϵÞð1þ k02⊥Þjβ01j2ð1 − κÞ, to lowest order in

ν=k0yϵ, where γ0 ¼ Imω0
1. To complete the heat flux

derivation we obtain the saturation level jβ01j2 from
Eq. (A4) of Ref. [18], with coupling coefficients and
frequencies supplied from the threshold model. This
equation is the steady-state turbulent energy balance
evaluated at the zonal wave number (ky ¼ 0). We derive
here a more rigorous solution than that of Ref. [18].
Because the wave number k0 is summed over, we change
the summation variable from k − k0 to k0. This allows
the nonlinear coupling coefficients to be grouped as

Cðk00;kÞ
iFj þCðk00;−k0Þ

ijF ¼ð−1Þi−1k0y½ω0
jð1þk02⊥Þþk0yð1þϵð1− ffiffiffi

8
p ÞÞþ

iνk02⊥�=½2Imω00
1ð1þk002⊥ Þ�≡C00

ij, where i ≠ j is 1 or 2, and ω00
j

is evaluated at k00. In terms of Cij
00 the zonal saturation

balance can be written ν¼ 4
P

k0 RefCðk;k0Þ
F21 ½jβ01j2ðτ21FC00

21þ
τ12FC00

12κÞ þ Rehβ0�1 β02iðτ12FC00
11 þ τ21FC00

22Þ þ iImhβ0�1 β02i
ðτ12FC00

11 − τ21FC00
22Þ�gjky¼0, where unprimed frequencies

are evaluated at k, τ21F ¼ ðiω̂00
2 þ iω̂0

1 − iω̂�
1Þ−1 and τ12F¼

ðiω̂00
1þiω̂0

2−iω̂�
1Þ−1 are triplet correlation times for the zonal-

flow-catalyzed interaction, Cðk;k0Þ
F21 ¼−ik0y½k02⊥−ðk⊥−k0⊥Þ2�=

2, and ω̂i ¼ ωi þ Δωi is the sum of the linear frequency
and a nonlinear eddy-damping rate Δωi. The eddy-damping
rate describes the decorrelation of a given mode frequency
from interactions with other turbulent modes.
As a nonlinear frequency, Δωi is proportional to k2 and

the turbulence level [23]. Because ωi ∝ k, nominally
Δωi ≪ ωi for k ≪ 1, allowing eddy damping to be

TABLE I. Linear coupling coefficients for two-fluid models of ITG turbulence. The threshold model matches the linear dispersion
relation of the kinetic threshold calculation of Ref. [20].

Coupling coefficient Original model (Refs. [15,21]) Threshold model

Z11 χk4⊥ χk4⊥ þ iϵkyð1þ
ffiffiffi
8

p Þ
Z12 ikyð1þ ηÞ ikyð1þ ηÞ
Z21 −2iϵky=ð1þ k2⊥Þ −2iϵky=ð1þ k2⊥Þ
Z22 ðiky þ νk2⊥ − 2iϵkyÞ=ð1þ k2⊥Þ ½iky þ νk2⊥ − iϵkyð

ffiffiffi
8

p
− 1Þ�=ð1þ k2⊥Þ
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ignored. However, for certain wave numbers τ12F (or τ21F)
is resonant, meaning ω00

2 þ ω0
1 − ω�

1 ¼ 0. In such cases Δωi
dominates τ12F even for k ≪ 1 and at low turbulence levels.
Resonance is intrinsic to stable-mode saturation by zonal-
flow-catalyzed transfer if the ion polarization drift is
neglected (k2⊥ → 0) and ν → 0. This is because the
three-wave coupling condition k0 þ k00 ¼ k leads directly
to ω00

2 þ ω0
1 − ω�

1 → 0 when k is the wave number of the
zonal flow (ky ¼ 0). Note that even with k⊥ finite but small,
the contribution of the ion polarization drift to τ12F is
Oðk3⊥Þ, making it smaller than the contribution of Δωi.
We obtain an expression for Δωi to determine its

dependence on η, deriving it from the energy response
to an infinitesimal perturbation in the turbulent state [24]:

Δωi ¼
X

k0

−2iCðk;k0Þ
iFj

iω̂00
j − iω̂�

i þ iω̂0
i
½C00

ijjv0zj2

þ Cðk0;kÞ
Fij ðjβ002j2 þ hβ00�1 β00j iÞ�jk0y¼0: ð2Þ

Here Cðk;k0Þ
iFj ¼ ½−ω00

j ð1þk002⊥ Þþk00yð1þ ϵð1− ffiffiffi
8

p ÞÞþ iνk002⊥ �=
½ðω2−ω1Þð1þk2⊥Þ�, and the zonal flow v0z ¼ ik0xβ01jk0y¼0 ¼
ik0xϕ0jk0y¼0 enters Δωi as part of the turbulent spectrum.
The saturation balance is solved by assuming that all

relevant wave numbers are ≪ 1. We consider the inter-
actions of a zonal flow at ð−k0x; 0Þ, an unstable streamer
at ð0; k0yÞ, and a stable-mode sideband at ðk0x; k0yÞ. This
leads to jβ01j2¼ν½4RefCðk;k0Þ

F21 ½τ21FðC00
21þC00

22

ffiffiffi
κ

p
expð−iθÞÞþ

τ12FðC00
12κþC00

11

ffiffiffi
κ

p
expðiθÞÞ�g�−1. A more general expres-

sion is obtained from a standard Markovian assumption

that jβ01j2 varies more slowly than the other wave number-
dependent factors in the saturation balance arising from
coupling coefficients and τ factors. With this approxima-
tion, jβ01j2 is understood as evaluated at a typical unstable
wavenumber, and the denominator is summed over k0.
Considering the zonal saturation balance for other kx
introduces a sum over kx. The cross phase θ is obtained
from a symmetry of the nonlinearity that leads to the
constraint

P
j d½β0j expðiω0

jtÞ�=dt ¼ 0. Introducing β02 ¼
β01

ffiffiffi
κ

p
expðiθÞ as before, the constraint is solved to obtain

θ ¼ −αþ sin−1½Imðω0�
1 − ω0

2κÞκ−1=2jω0
2 − ω0�

1 j−1�, where α
is the complex phase of ω0

2 − ω0�
1 .

Substituting the Markovianized solution for jβ01j2 into the
heat flux, we obtain

Qi ¼
X

k000

γðk000Þð1þ k0002⊥ Þνð1 − κÞ
4ϵ
P

kx;k0 ðk02⊥ − k002⊥ ÞRefik0y½τ21FðC00
21 þ C00

22

ffiffiffi
κ

p
e−iθÞ þ τ12FðC00

12κ þ C00
11

ffiffiffi
κ

p
eiθÞ�g : ð3Þ

factor k2⊥0 − k2⊥00 has been extracted from Cðk;k0Þ
F12 because it

produces along with γðk000Þ a quasilinear-flux-like factor.
The remaining factors, which include the triplet correla-
tion time and coupling coefficients, represent nonlinear
contributions to a critical-gradient upshift. There is con-
siderable symmetry in pieces of the denominator, leading
to partial cancellations. Moreover, the complex phase of
the factors inside the real part is important in the
dependence of Qi on η. Figure 3 shows the dependence
of Qi on η for a case driven by the streamer (0,0.25) with
ν ¼ 0.001, κ ¼ 0.9999, and two values of ϵ. ν ¼ 0.001
keeps the system close to collisionless, while still bal-
ancing nonlinear excitation of the zonal flow. A larger ϵ of
1.25 was chosen to put a threshold η between 2 and 3. The
smaller ϵ reduces the threshold while showing qualita-
tively similar behavior. The theoretical results are plotted

alongside numerical solutions of the nonlinear model,
showing reasonable agreement. A NLCG is more easily
defined from the simulation results than the theory, but the
behavior is consistent with the notion of flux reduction
close to the threshold. A scan in η for larger collisionality
ν ¼ 0.0025 shows very similar behavior.
The behavior of Fig. 3 resides in τ and the coupling

coefficients. The former is near-resonant, maximizing its
value for the zonal-flow catalyzed triplet, yielding τ ¼ ∞
and Qi ¼ 0 if Δωi ¼ ν ¼ k2⊥ ¼ 0. With these quantities
finite but small, τ and Qi are finite; τ decreases and Qi
increases with η, because ω increases with η. The variation
of τ and CiFj are shown in Fig. 4. Variation of the latter,
which is dominated by the ratio ½ReðωÞ þ iγ�=γ, is strong-
est just above the threshold, where CiFj ∼ ReðωÞ=γ,
and asymptotes to a constant for large η. This variation

FIG. 3. Heat flux as a function of η for ϵ ¼ 0.625 and ϵ ¼ 1.25:
analytic theory (triangles and circles), numerical solution (in-
verted triangles and crosses).
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strongly contributes to reduced Qi just above the thresh-
old, and to eddy damping. Near the threshold, the first
term of Eq. (2) dominates, both because of its proportion-
ality to jvZj2 and because CiFj is much larger than CF12 for
small k. The eddy damping is therefore proportional to
C2
iFj, which makes it significant only near threshold. It

smooths countering trends in τ arising from the scaling of
ω00
2 and ω1 with η just above threshold, and exposes the

matched scalings of these two frequencies once η
increases above 5. The stable fraction κ ¼ jβ2j2=jβ1j2 is
governed by the equipartition of energy dissipation rates
γ1jβ1j2 ¼ jγ2jjβ2j2, a property of stable-mode saturation
[22]. For a conjugate mode pair, κ ¼ 1. Collisionality
breaks conjugate symmetry, making κ slightly less than
unity. The value used in Fig. 3 is consistent with γ1=jγ2j at
larger η. Near the instability threshold, η − ηc < 1, the
saturation characterization γ1jβ1j2 ¼ jγ2jjβ2j2 becomes
unreliable because of branch points in the complex mode
frequencies that occur at different values of η due to
threshold dependence on k2⊥. In this region κ is extrapo-
lated from its value at larger η.
This resonance is important in gyrokinetic manifesta-

tions of critical-gradient behavior [25] and in the non-
linear stabilization of ITG turbulence at finite β [26]. (β is
the plasma pressure normalized to the magnetic energy of
the confining field.) In the latter the flux is very small
below the linear β threshold and only begins to rise at
lower β. This occurs because large τ near threshold makes
Qi very small, while resonance broadening in the form of
finite k2⊥ exposes stronger dependence on β, allowing it to
rise more sharply further below the threshold as β → 0.
This effect has been demonstrated by gyrokinetic model-
ing of experimental discharges [27]. The unitarity of
mechanisms for the critical-gradient upshift and finite-β
nonlinear stabilization, combined with the fact that the
latter occurs where zonal-flow shearing is weakened by
magnetic fluctuations [28], strongly suggests that shear
suppression cannot be the mechanism of the critical-
gradient upshift.

This Letter has demonstrated that the nonlinear energy
transfer properties of ITG turbulence, aside from magni-
tudes, are essentially unchanged above and below the
NLCG, with no disabling of E × B shearing. Motivated
by these observations, the theoretical and conceptual basis
for a new physical explanation of nonlinear critical-gradient
upshift behavior has been developed, accounting for three-
wave resonance in the dominant saturation mechanism of
zonal-flow catalyzed transfer to stable modes.

This work was supported by U.S. Department of Energy
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