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We predict the limits of existence of atomic nuclei, the proton and neutron drip lines, from the light
through medium-mass regions. Starting from a chiral two- and three-nucleon interaction with good
saturation properties, we use the valence-space in-medium similarity renormalization group to calculate
ground-state and separation energies from helium to iron, nearly 700 isotopes in total. We use the available
experimental data to quantify the theoretical uncertainties for our ab initio calculations towards the drip
lines. Where the drip lines are known experimentally, our predictions are consistent within the estimated
uncertainty. For the neutron-rich sodium to chromium isotopes, we provide predictions to be tested at rare-
isotope beam facilities.
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Atomic nuclei, which form the basis for known matter in
the Universe, cannot be made from arbitrary numbers of
protons and neutrons. For a given element (i.e., proton
number Z) a nucleus can support only so many neutrons,N,
and vice versa. The point at which nucleons no longer form
a bound system is referred to as the drip line. Specifically, at
the drip line one- or two-nucleon separation energies
become negative, and nuclei decay via nucleon emission.
The proton drip line is known experimentally to the
medium-mass region, but to date, the neutron drip line is
established only up to neon (Z ¼ 10) [1,2]. Pinning down
the neutron drip line to calcium and beyond is a flagship
scientific motivation for next-generation rare-isotope beam
facilities [3,4]. Indeed several neutron-rich isotopes, includ-
ing 60Ca, were recently discovered in this region [5].
Furthermore, knowledge of the neutron drip line is impor-
tant for r-process simulations modeling the synthesis of
heavy elements [6,7] that occurs in neutron-star merg-
ers [8].
Predicting the location of the drip lines poses a sub-

stantial theoretical challenge, particularly because many
nuclei far from known data must be calculated systemati-
cally. In a pioneering study, the nuclear landscape was
predicted from extrapolations of state-of-the-art nuclear
density functional theory, and approximately 7000 nuclei
were estimated to exist in nature [9]. Since this work,
tremendous progress has been made in statistical analyses
of nuclear models [10,11] as well as in ab initio nuclear
theory. Developments in chiral effective field theory
[12–14] and the similarity renormalization group [15,16]

are pushing nuclear forces to new levels of accuracy and
ranges of applicability. Though a robust and systematic
theoretical framework has not yet been fully achieved,
particular nuclear Hamiltonians have been constructed
which reproduce ground-state energies up to the tin region
[17–19]. Three-nucleon (3N) forces play a key role in
understanding the drip lines [20–25]. Moreover, many-
body theories [26–31] have advanced to treat medium-mass
open-shell systems [23,32–35], with the primary limitation
being computational resources needed to obtain conver-
gence with respect to basis size, laying the groundwork for
a new era of ab initio theory.
In this Letter we calculate properties of essentially all

nuclei from helium to iron (Z ¼ 2–26), close to 700 in
total, to provide a global ab initio survey of ground-state
energies and predict the nuclear drip lines. Using two-
nucleon (NN) and 3N interactions constrained by only few-
body data, we solve the many-body problem with the
valence-space formulation of the in-medium similarity
renormalization group (VS-IMSRG) [29,30,32,35–37].
Our results yield an overall root-mean-square (rms)
deviation of 3.3 MeV from absolute experimental energies
and 0.7–1.4 MeV from separation energies. In comparison,
state-of-the-art energy-density functionals obtain rms
deviations in the range 0.6–2.0 MeV for energies and
0.4–1.25 MeV for separation energies [38–41] (note,
however, that the density functional rms values are obtained
over a much larger range of masses).
While the drip line signature is unambiguous experi-

mentally, from a theoretical perspective an error of a few

PHYSICAL REVIEW LETTERS 126, 022501 (2021)
Editors' Suggestion Featured in Physics

0031-9007=21=126(2)=022501(6) 022501-1 © 2021 American Physical Society

https://orcid.org/0000-0003-4833-7959
https://orcid.org/0000-0001-8027-4076
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.022501&domain=pdf&date_stamp=2021-01-12
https://doi.org/10.1103/PhysRevLett.126.022501
https://doi.org/10.1103/PhysRevLett.126.022501
https://doi.org/10.1103/PhysRevLett.126.022501
https://doi.org/10.1103/PhysRevLett.126.022501


tens of keV—well beyond current levels of precision—can
make the difference between an isotope being bound or
unbound. Therefore, an assessment of theoretical uncer-
tainty is mandatory for any meaningful drip line prediction.
Ab initio methods present an appealing framework for
uncertainty quantification: one begins with the most gen-
eral Lagrangian compatible with the applicable sym-
metries, organized by a systematically improvable power
counting, then solves the nuclear many-body problem
within a controlled and systematically improvable approxi-
mation scheme, propagating all uncertainties. Such a
prescription has not yet been achieved in practice, so for
the present we use a comparison with known data to
calibrate a physically motivated model for the error. Recent
work in a similar spirit has applied Bayesian machine
learning algorithms to global mass models [10,41,42]. The
main advantages of our current approach are (i) the
predictions should not be biased towards measured data,
because they were not fit to any data beyond helium and
(ii) the predictions can be benchmarked where the proton
and neutron drip lines are known experimentally (mass
models are typically applied to Z ≳ 8).
In the VS-IMSRG, a valence-space Hamiltonian of

tractable dimension is decoupled from the larger Hilbert
space via an approximate unitary transformation. We begin
in a harmonic-oscillator basis of 15 major shells (i.e.,
e ¼ 2nþ l ≤ emax ¼ 14) with an imposed cut of e1 þ e2 þ
e3 ≤ E3Max ¼ 16 for 3N matrix elements. The resulting
ground-state energies are converged to better than a few

hundred keV with respect to these truncations, and we
perform extrapolations in emax to obtain infrared conver-
gence [43,44]. Transforming to the Hartree-Fock basis, we
capture effects of 3N interactions between valence nucleons
via the ensemble normal ordering of Ref. [35]. We then use
the Magnus formulation of the IMSRG [29,45], truncating
all operators at the normal-ordered two-body level—the
IMSRG(2) approximation—to generate approximate
unitary transformations that decouple the core energy
and valence-space Hamiltonian for each nucleus to be
calculated.
By default, we employ a so-called 0ℏω valence space,

where valence nucleons occupy the appropriate single
major harmonic-oscillator shell (e.g., for 8 < NðZÞ < 20
the sd shell, 20 < NðZÞ < 40 the pf shell, etc.). At
NðZÞ ¼ 2, 8, 20, 40, we do not decouple a neutron (proton)
valence space, and no explicit neutron (proton) excitations
are allowed in the calculation. We discuss exceptions to this
below. Finally the resulting valence-space Hamiltonians are
diagonalized with the NuShellX@MSU shell-model code [46]
(with the exception of a few of the heaviest Ca, Sc, and Ti
isotopes, which were computed with the m-scheme code
Kshell [47]).
We thus calculate ground (and excited) states of all

nuclei from helium to iron, except those for which the shell-
model diagonalization is beyond our computational limits.
For the input NNþ 3N interaction, we use the potential
labeled 1.8=2.0 (EM) in Refs. [17,48], where the 3N
couplings were fit to the 3H binding energy and the 4He

FIG. 1. Calculated probabilities for given isotopes to be bound with respect to one- or two-neutron (proton) removal. The gray region
indicates nuclei that have been calculated, while the height of the boxes corresponds to the estimated probability that a given nucleus is
bound with respect to one- or two-neutron (proton) removal in the neutron-rich (deficient) region of the chart. The inset shows the
residuals with experimental ground-state energies.
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charge radius. This interaction reproduces experimental
ground-state energies of light- to medium-mass nuclei
remarkably well [19,49]. Studies of nuclear matter
[17,50] have shown that this interaction saturates with
slightly too much binding and at somewhat too high
density, leading to too small radii for finite nuclei [49].
We use this observation below to model our systematic
error in the separation energies. In the Supplemental
Material [51], we provide results for absolute and separa-
tion energies for all nuclei calculated. In the inset of Fig. 1,
we plot the range of agreement with experiment and find an
overall rms deviation of 3.3 MeV. The experimental bind-
ing and separation energies are taken from the Atomic
Mass Evaluation [52], with additional recent data from
Refs. [53–56].
As no experimental input beyond 4He is used in the

current calculations, our results should not be biased
toward known data. (One might argue that the selection
of one interaction from the family of interactions used in
Ref. [49] constitutes incorporation of information beyond
A ¼ 4. However, in the cases we have checked, other
interactions in the family yield similar separation energies.)
Therefore our approach is to use measured data to assess
how well separation energies are reproduced in general,
then assume our calculations will behave similarly for
separation energies which have not yet been measured.
This neglects phenomena which may emerge in the
neutron-rich region, such as halo structures or island-of-
inversion physics [57,58], but our results suggest that the
impact of these effects on separation energies tends to lie
within our estimated uncertainties.
To characterize the quality of the reproduction of exper-

imental data, we assess the residual, δSα ¼ Sthα − Sexpα , for the
separation energy in channel α ∈ fn; p; 2n; 2pg. We model
the residual as

δS ¼ fðN; Z; Sth;…Þ þ ϵðσ2Þ; ð1Þ

where f is a function characterizing the systematic error (see
below) and ϵ is a random number drawn from a Gaussian
distribution of mean 0 and variance σ2.
The main source of many-body error in our calculations

is due to the IMSRG(2) approximation. For soft input
interactions such as the one used here, this approximation is
accurate for binding energies at the level of a few percent
[35]. Given that binding energies in this region are a few
hundred MeV, this would naively suggest an error of
several MeV on the separation energies. However, the
errors made for neighboring nuclei are strongly correlated
(see Supplemental Material) and largely cancel, improving
the accuracy of the separation energies (the uncorrelated
part will contribute to the random error ϵ). This correlation
is deteriorated in the case where a different valence space is
used for the two binding energies entering into the
separation energy. Wherever possible, we use a consistent

valence space to compute separation energies, but this is
not always possible. For example, to compute the S2n of
38Cl, we require the ground-state energy of 38Cl (N ¼ 21),
which has a valence neutron in the pf shell, and 36Cl
(N ¼ 19), which has a valence hole in the sd shell. This
leads to an increased error for these special cases, and we
treat these separately.
We must also consider errors due to deficiencies of the

input Hamiltonian. As mentioned above, a notable defi-
ciency of this Hamiltonian is that predicted radii are
systematically smaller than experiment by ≈4% for the
mass range considered [49]. This should have an impact on
the computed separation energies. In an infinite potential
well, decreasing the width of the potential well will spread
out the spectrum of single-particle energies, which depend
on the radius as 1=R2, and we expect

δS ≈ −2
δR
R

Sþ const; ð2Þ

where the radius shift δR=R ≈ −0.04, and the constant shift
depends on the potential well depth and any shifts thereof.
We therefore anticipate that the residual δS will exhibit a
linear dependence on the separation energy S with a slope
of approximately 0.08. Continuum and other effects will of
course modify this simple picture. However, the angular
momentum and Coulomb barriers, as well as the expansion
on a harmonic oscillator basis keep deviations from this
linear behavior within the error band, even down to slightly
negative separation energies (see discussion below and
Fig. 2).
We therefore perform a Bayesian linear regression for the

model

δS ¼ ASth þ B þ ϵðσ2Þ ð3Þ

to obtain a posterior pðA;B; σ2jSth; SexpÞ for the unknown
parametersA;B; σ2, given the theoretical and experimental
data. We then marginalize over the posterior to obtain a
posterior predictive distribution (PPD) pðS̃expjS̃th; Sth; SexpÞ
for a not-yet-measured separation energy S̃exp, given the
theoretical value, and all the known data. Details can
be found in the Supplemental Material [51], see also
Refs. [59–61] for the statistical model used. The result is
shown in Fig. 2. As expected based on the discussion of
Eq. (2), we obtain a slope of approximately 0.08 for each
separation energy. Importantly, if we did not account for
this systematic effect our uncertainty assessment would be
biased by the relative abundance of data on well-bound
isotopes.
The cases requiring inconsistent valence spaces (which

were not used in the regression) are marked with crosses in
Fig. 2. In these cases the error due to incomplete cancella-
tion of induced many-body effects is more difficult to
model and so we are more conservative. For each valence-
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space boundary at N; Z ¼ 8, 20, 40 we apply an additional
S-independent shift to the PPD—equal to the mean
deviation from the regression line—and inflate the standard
deviation by the size of the shift.
The probability P1n that an isotope is bound with respect

to one-neutron emission is given by the fraction of the PPD
for which Sn is positive. The total probability to be bound is
given by the fraction of the joint PPD for which all four
separation energies are positive,

Pbound ¼
Y

α

Z
∞

0

dS̃expα pðS̃expα jS̃th; Sth; SexpÞ; ð4Þ

where as above α ∈ fn; p; 2n; 2pg. As an illustration, the
calculated separation energies, with the 68% uncertainty
band, are shown in Fig. 3, for chlorine isotopes. Analogous
figures for all isotopic chains studied are included in the
Supplemental Material, and a complete data table is
provided as a Supplemental file.
We translate this large-scale analysis into the main result

of this Letter in Fig. 1. For each calculated nuclide from
helium to iron, we assign a probability that it is bound with
respect to one- or two-nucleon emission. Every nuclide
calculated is represented by a box in the plot, where its height

and color denotes this probability: a full box is bound with
probability 1, and an empty gray box is bound with
probability 0. For ease of interpretation, we employ a color
code with divisions at Pbound ¼ ð0.05; 0.32; 0.68; 0.95Þ. We
denote experimentally known drip lines with a filled symbol
and the heaviest (lightest) observed isotopes in the neutron-
rich (deficient) regions with an open symbol.
Qualitatively, the location of the known drip lines appear

to be reproduced well in Fig. 1, both on the proton-rich
side, and on the neutron-rich side where it is known up to
Z ¼ 10. (Further quantitative validation of the approach
is presented in the Supplemental Material). Even the

FIG. 2. Dependence of the residuals δS ¼ Sth − Sexp on the
computed separation energy. The brown line and bands reflect the
mode (maximum of the distribution) and 68% and 95% con-
fidence intervals of the posterior predictive distribution obtained
by a Bayesian linear regression. In each panel, the slope, offset,
and average standard deviation σ̄ of the posterior predictive
distribution are listed (in MeV). The crosses indicate cases in
which the separation energy was computed with inconsistent
valence spaces, due to the N; Z ¼ 8, 20, 40 shell gaps indicated in
blue, green, and magenta, respectively.

FIG. 3. Separation energies and probability to be bound for the
chlorine isotopes. The red dots indicate the results of the many-
body calculation, while the red bands indicate the corrected 68%
uncertainty intervals. Blue circles indicate separation energies
computed with inconsistent valence spaces.
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well-known halo systems 11Li and 22C are predicted to be
either bound or marginal, implying that the physics of
threshold systems lie within our estimated error bands. For
all isotopic chains from sodium to chromium, our calcu-
lations indicate the likely existence of at least one isotope
beyond the current known limits.
In calcium, earlier ab initio calculations have generally

found that 62Ca [62,63] is the heaviest bound isotope (see
also Ref. [64]), with a very flat trend in binding energies
beyond, leaving the location of the drip line ambiguous.
The present analysis reflects that ambiguity; similar to
oxygen the final bound nucleus could be closer to stability,
but there is a reasonable probability that the drip line
extends beyond 70Ca, as predicted in the statistical analysis
of Ref. [10]. We note the remarkable similarities of the
latter results to our ab initio predictions, which thus
provides a consistent picture of the neutron drip line up
to calcium from independent theoretical approaches.
In summary, we have calculated ground-state energies of

essentially all nuclei from helium to iron in the ab initio
VS-IMSRG starting from NN and 3N interactions fit to
few-body systems only. Using available experimental data
to quantify our theoretical error, we provide drip line
predictions in the neutron-rich region above neon to guide
ongoing and future efforts at rare-isotope beam facilities
worldwide. This work also advances ab initio theory to
global calculations, highlighting the rapidly increasing
scope of the field, and the potential to provide predictions
beyond where data exists with uncertainty estimates. In
principle, we might have expected a global survey to
uncover deficiencies in the 1.8=2.0 (EM) interaction which
were not apparent based on prior calculations of closed-
shell nuclei or selected isotopic chains; however, we
globally find an impressive agreement. While significant
challenges remain in improving the rigor of theoretical
error estimates from nuclear forces and many-body meth-
ods, the approach presented here indicates a path—once
current computational limitations can be overcome—for
ab initio input for nucleosynthesis calculations probing the
r-process region of extreme neutron-rich nuclei.
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[40] R. Navarro Pérez, N. Schunck, A. Dyhdalo, R. J. Furnstahl,
and S. K. Bogner, Phys. Rev. C 97, 054304 (2018).

[41] L. Neufcourt, Y. Cao, W. Nazarewicz, and F. Viens, Phys.
Rev. C 98, 034318 (2018).

[42] L. Neufcourt, Y. Cao, S. A. Giuliani, W. Nazarewicz,
E. Olsen, and O. B. Tarasov, Phys. Rev. C 101, 044307
(2020).

[43] R. J. Furnstahl, G. Hagen, and T. Papenbrock, Phys. Rev. C
86, 031301(R) (2012).

[44] R. J. Furnstahl, G. Hagen, T. Papenbrock, and K. A. Wendt,
J. Phys. G 42, 034032 (2015).

[45] T. D. Morris, N. M. Parzuchowski, and S. K. Bogner, Phys.
Rev. C 92, 034331 (2015).

[46] B. A. Brown and W. D. M. Rae, Nucl. Data Sheets 120, 115
(2014).

[47] N. Shimizu, T. Mizusaki, Y. Utsuno, and Y. Tsunoda,
Comput. Phys. Commun. 244, 372 (2019).

[48] J. Simonis, K. Hebeler, J. D. Holt, J. Menéndez, and A.
Schwenk, Phys. Rev. C 93, 011302(R) (2016).

[49] J. Simonis, S. R. Stroberg, K. Hebeler, J. D. Holt, and A.
Schwenk, Phys. Rev. C 96, 014303 (2017).

[50] C. Drischler, K. Hebeler, and A. Schwenk, Phys. Rev. Lett.
122, 042501 (2019).

[51] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.126.022501 for details
and validation figures of the statistical model, figures
analogous to Fig. 3 for all isotope chains from He to Fe,
and a plain text file containing the theoretical results and
experimental data used.

[52] M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi,
and X. Xu, Chin. Phys. C 41, 030003 (2017).

[53] T. B. Webb et al., Phys. Rev. Lett. 122, 122501 (2019).
[54] S. Leblond et al., Phys. Rev. Lett. 121, 262502 (2018).
[55] I. Mukha et al., Phys. Rev. C 98, 064308 (2018).
[56] S. Michimasa et al., Phys. Rev. Lett. 121, 022506 (2018).
[57] E. K. Warburton, J. A. Becker, and B. A. Brown, Phys. Rev.

C 41, 1147 (1990).
[58] E. Caurier, F. Nowacki, and A. Poves, Phys. Rev. C 90,

014302 (2014).
[59] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A.

Vehtari, and D. B. Rubin, Bayesian Data Analysis, 3rd ed.
(CRC Press, Boca Raton, 2014).

[60] L. Fahrmeir, T. Kneib, and S. Lang, Regression (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009).

[61] R. G. Newcombe, Stat. Med. 17, 857 (1998).
[62] G. Hagen, P. Hagen, H. W. Hammer, and L. Platter,

Phys. Rev. Lett. 111, 132501 (2013).
[63] J. D. Holt, J. Menéndez, J. Simonis, and A. Schwenk,

Phys. Rev. C 90, 024312 (2014).
[64] H. Hergert, Front. Phys. 8, 379 (2020).

PHYSICAL REVIEW LETTERS 126, 022501 (2021)

022501-6

https://doi.org/10.1146/annurev-nucl-102313-025446
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1016/j.physrep.2015.12.007
https://doi.org/10.1146/annurev-nucl-101917-021120
https://doi.org/10.1103/PhysRevLett.113.142501
https://doi.org/10.1103/PhysRevLett.113.142501
https://doi.org/10.1103/PhysRevLett.113.142502
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevLett.118.032502
https://doi.org/10.1103/PhysRevLett.118.032502
https://doi.org/10.1103/PhysRevC.85.061304
https://doi.org/10.1103/PhysRevC.85.061304
https://doi.org/10.1103/PhysRevC.93.051301
https://doi.org/10.1103/PhysRevLett.102.152503
https://doi.org/10.1103/PhysRevLett.102.152503
https://doi.org/10.1103/PhysRevC.97.044313
https://doi.org/10.1103/PhysRevC.97.054304
https://doi.org/10.1103/PhysRevC.98.034318
https://doi.org/10.1103/PhysRevC.98.034318
https://doi.org/10.1103/PhysRevC.101.044307
https://doi.org/10.1103/PhysRevC.101.044307
https://doi.org/10.1103/PhysRevC.86.031301
https://doi.org/10.1103/PhysRevC.86.031301
https://doi.org/10.1088/0954-3899/42/3/034032
https://doi.org/10.1103/PhysRevC.92.034331
https://doi.org/10.1103/PhysRevC.92.034331
https://doi.org/10.1016/j.nds.2014.07.022
https://doi.org/10.1016/j.nds.2014.07.022
https://doi.org/10.1016/j.cpc.2019.06.011
https://doi.org/10.1103/PhysRevC.93.011302
https://doi.org/10.1103/PhysRevC.96.014303
https://doi.org/10.1103/PhysRevLett.122.042501
https://doi.org/10.1103/PhysRevLett.122.042501
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.022501
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.022501
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.022501
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.022501
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.022501
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.022501
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.022501
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1103/PhysRevLett.122.122501
https://doi.org/10.1103/PhysRevLett.121.262502
https://doi.org/10.1103/PhysRevC.98.064308
https://doi.org/10.1103/PhysRevLett.121.022506
https://doi.org/10.1103/PhysRevC.41.1147
https://doi.org/10.1103/PhysRevC.41.1147
https://doi.org/10.1103/PhysRevC.90.014302
https://doi.org/10.1103/PhysRevC.90.014302
https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8%3C857::AID-SIM777%3E3.0.CO;2-E
https://doi.org/10.1103/PhysRevLett.111.132501
https://doi.org/10.1103/PhysRevC.90.024312
https://doi.org/10.3389/fphy.2020.00379

