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We investigate collisional decay of the axial charge in an electron-photon plasma at temperatures
10 MeV–100 GeV. We demonstrate that the decay rate of the axial charge is first order in the fine-structure
constant Γflip ∝ αm2

e=T and thus orders of magnitude greater than the naive estimate which has been in use
for decades. This counterintuitive result arises through infrared divergences regularized at high temperature
by environmental effects. The decay of axial charge plays an important role in the problems of leptogenesis
and cosmic magnetogenesis.
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The origin of cosmic magnetic fields remains a subject of
intense debate, see Refs. [1–4] for reviews. A leading
hypothesis is that these fields originated in the hot and
homogeneous early Universe. If this hypothesis is correct,
the requirements that the magnetic fields (i) were germi-
nated before and (ii) survived until the beginning of the
structure formation epoch (when the process of their
amplification started)—impose tight constraints on the
possible history of the Universe, likely implying the
existence of new physics [4,5]. This potential for serving
as a bridge between the observational data and the pro-
perties of the early Universe makes both primordial
magnetogenesis and magnetohydrodynamics (MHD) of
ultrarelativistic plasmas research topics of fundamental
importance. It has been argued that due to the weakness
of nonconservation of the axial charge current in an
ultrarelativistic plasma, the proper description of the
evolution of primordial cosmic magnetic fields requires
an extension of MHD called chiral magnetohydrodynamics
[6–8], see also Refs. [9,10]. In chiral MHD the system of
Maxwell and Navier-Stokes equations is supplemented
with an extra degree of freedom—the axial chemical
potential. Such an extension materially affects the predic-
tions of the theory. In particular, chiral MHD admits for the
transfer of magnetic energy from short- to long-wavelength
modes of helical magnetic fields, partially compensating
Ohmic dissipation in the early Universe and thus increasing

their chance to survive until today [6,7,11–16]. It is worth
noting that chiral MHD has drawn a lot of recent interest
not only because of its importance for the description of
primordial magnetic fields, but also due to its relevance to
the theory of neutron stars and quark-gluon plasmas (see,
e.g., Refs. [8,10–34]).
The chiral MHD description is only appropriate inas-

much as the axial current can be treated as conserved on
microscopic timescales such as the momentum and energy
relaxation rates. This requires the typical kinetic energy of
an electron in the plasma to significantly exceed the
electron mass me, so one can meaningfully assign chirality
to each particle. In such a high-temperature regime,
T ≫ me, the axial charge decays through rare chirality-
flipping processes, which are still possible due to the
nonconservation of chirality introduced by a perturbatively
small mass term. Surprisingly, the chirality flipping rate
resulting from such processes has never been rigorously
calculated [35]. The previous body of work relied on the
naive estimate of the chirality flip rate

Γnaive
flip ∝

�
me

T

�
2

α2T ð1Þ

as being second order in the small parameter responsible
for chirality nonconservation me=T and first order in the
electron scattering rate Γscat ∝ α2T (see, e.g., Refs. [7,38–
40]), where α ¼ e2=ð4πÞ is the fine structure constant. This
estimate is based on the simple rationale that for an
ultrarelativistic particle in a definite helicity state, which
up to a correction on the order of me=T is the same as a
definite chirality state, the helicity can only be flipped via a
sideways scattering process having the rate Γscat.
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The aim of the present work is to show that contrary to
the naive expectation Eq. (1), the actual chirality flipping
rate in an ultrarelativistic plasma is first order in α; see
Eq. (9). We focus, in particular, on the analysis of infrared
singularities in the matrix elements of chirality-flipping
Compton scattering and show how they effectively lead to
the cancellation of one power of α. We also briefly discuss
other scattering channels which contribute to chirality
flipping in the same order of perturbation theory and give
the resulting leading-order asymptotic expression for the
chirality flipping rate. A detailed derivation of this results in
the framework of quantum field theory based linear
response formalism can be found in our companion paper
[41]. We note that although it is natural for kinetic
coefficients associated with electron-photon scattering to
be second order in the fine structure constant, there exists
another known exception from this rule—the axial charge
diffusion coefficient [42].
Our main idea can be summarized as follows. We

consider 2 ↔ 2 chirality flipping processes, starting from
the massless QED limit and treating both the electron mass
and the electron-photon coupling as perturbations (see
Fig. 1). As is well known, such processes have a non-
integrable infrared singularity at small momentum transfer
[43,44]. This signals the need for the resummation of the
leading infrared divergence in all orders of the perturbation
theory series. Such a resummation should generally result
in an answer Γflip ∝ α2Tm2

e=q2IR, where qIR is the infrared
regulator scale associated with either the effective mass or
the lifetime of the quasiparticle associated with the electron
propagator. In a hot plasma a natural infrared scale arises
from the thermal self-energy corrections to the dispersion

relations of (quasi)particles. In the Supplemental Material
[45], Sec. Awe use hard thermal loops (HTL) resummation
to show that such corrections are of the order qIR ∼

ffiffiffi
α

p
T,

which results in Γflip ∝ αm2
e=T. We note that such an

approach is not valid in the regime where the self-energy
corrections are less than the electron mass. Therefore the
validity range of our analysis is T ≥ me=

ffiffiffi
α

p
∼ 10 MeV.

Next we describe our calculations in some detail. Particle
chiralities are well defined for free massless particles.
Therefore we start from massless QED and treat mass as
a perturbation. In plasma this means that we consider each
chirality obeying its own Fermi-Dirac distribution

fL;RðkÞ ¼
1

exp½ðϵk � μ5Þ=T� þ 1
≡ nFðϵk � μ5Þ; ð2Þ

with chemical potentials �μ5 for right- and left-chiral
particles. [For the corresponding antiparticles the chemical
potentials should be taken with the opposite sign,
fL̄;R̄ðkÞ ¼ nFðϵk ∓ μ5Þ]. The left-right chirality imbalance
is then characterized by the density of axial charge

q5 ¼
Z

d3k
ð2πÞ3 ðfR − fR̄ − fL þ fL̄Þ ¼

T2μ5
3

; ð3Þ

where in the last equality we assumed that μ5 ≪ T.
The electron mass me breaks the axial symmetry and

thus the axial charge relaxes to zero: _q5 ¼ −Γflipq5 [51].
Assuming that the chirality relaxation is the slowest
equilibration process in the plasma (we give a posterior
justification of the assumption of the slowness of the
chirality relaxation) the thermodynamic state (2) with
slowly varying μ5 ≠ 0 can still be defined. We can then
use Boltzmann’s kinetic theory to compute Γflip as an
asymptotic series in me=T ≪ 1 [57].
We now proceed to the calculation of the chirality

relaxation rate due to the 2 ↔ 2 processes of Fig. 1 within
the framework of Boltzmann’s kinetic theory. The rate of
change of the axial charge due to the 2 ↔ 2 scattering
processes is given by

_q5 ¼ −
Z

d3k
ð2πÞ3 ðCR − CR̄ − CL þ CL̄Þ; ð4Þ

where

CaðkÞ ¼
X
fbcdg

Z
d3k0

ð2πÞ3
d3p
ð2πÞ3

d3p0

ð2πÞ3
jMab

cdðkp → k0p0Þj2
16ϵkϵk0ϵpϵp0

ð2πÞ4δð4Þðkþ p − k0 − p0Þ

½faðkÞfbðpÞð1� fcðk0ÞÞð1� fdðp0ÞÞ − ð1� faðkÞÞð1� fbðpÞÞfcðk0Þfdðp0Þ�; ð5Þ

(a) (b)

FIG. 1. The t-channel Compton scattering (a) and electron-
positron annihilation (b) with the chirality flip in the intermediate
state contributing to the chirality equilibration rate. Although
naively they are of the second order in α, their amplitudes contain
infrared singularities. Regularization of these singularities leads
to the result which is of the first order in α.
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is Boltzmann’s collision integral. In Eq. (5), k ¼ ðk0;kÞ is
the 4-momentum, with k0 ¼ ϵk ¼ jkj (the hard particles
with k≳ T can be treated effectively as massless). The delta
function takes into account the energy-momentum con-
servation in scattering. The subscripts a, b, c, d run through
the set of particle species R;L; R̄; L̄; γ; faðkÞ is the
distribution function for the particle of type a and in the
expression �faðkÞ the sign depends on the statistics of the

particle a (plus for a boson and minus for a fermion). The
amplitudes Mab

cd are found by applying Feynman’s rules to
the diagrams shown in Fig. 1.
Expanding the thermal Fermi-Dirac distribution func-

tions in the collision integral on the right-hand side of
Eq. (4) to the linear order in μ5 and using Eq. (3) we find
that the chirality imbalance decays exponentially with the
relaxation rate given by

Γflip ¼
3π

T3

Z
d3k
ð2πÞ3

d3p
ð2πÞ3

d3q
ð2πÞ3 fnFðkÞnFðpÞ½1þ nBðk0Þ�½1þ nBðp0Þ�jMannihj2

þ nFðkÞnBðpÞ½1þ nBðk0Þ�½1 − nFðp0Þ�jMComptj2g
δðϵk þ ϵp − ϵk0 − ϵp0 Þ

ϵkϵk0ϵpϵp0
; ð6Þ

where k0 ¼ k − q, p0 ¼ pþ q, and nBðpÞ ¼
1=½expðϵp=TÞ − 1� is the Bose-Einstein distribution func-
tion. We note that in the weakly nonequilibrium situation
μ5 ≪ T considered here it is appropriate to take the Fermi-
Dirac distribution functions and all matrix elements in
Eq. (6) at μ5 ¼ 0.
Since we treat mass me as a perturbation, we expand the

matrix element of the Compton process as a perturbative
series in me and keep only the leading term

jMð1Þj2 ¼ 8m2
ee4ϵkϵpð1 − cos θkpÞ

ðq2Þ2 ; ð7Þ

where θkp is an angle between vectors k and p. This matrix
element contains a nonintegrable singularity at q ¼ 0
which needs to be regularized by the environmental effects.
To that end, we perform a partial resummation of the
perturbative expansion in α to take into account the thermal
self-energy corrections to the dispersion relations of qua-
siparticles:

jMð1Þ;thermj2 ¼ 8m2
ee4ϵkϵpð1 − cos θkpÞ

jðq −ϖÞ2j2 ; ð8Þ

where ϖ is a four-vector associated with the retarded self-
energy of the intermediate particle by ϖμ ¼ trðγμΣretÞ=4;
see Refs. [58,59] and the discussion around Eq. (A.3) in the
Supplemental Material [45] for more details. The presence
of ϖ regularizes the infrared divergence at q ∼

ffiffiffi
α

p
T.

Using the explicit expressions for the electron self-
energy in the HTL approximation, we find that the chirality
flipping rate

Γflip ¼ C × α
m2

e

T
; ð9Þ

where the constant C ≈ 0.24 (see Ref. [45], Sec. A).

Next, we briefly discuss other processes that contribute
to the chirality flipping rate in the same order of perturba-
tion theory as the Compton process. One such process is
shown in Fig. 2. Its contribution to the chirality flipping rate
can be estimated in a way similar to the 2 ↔ 2 case [see
Eq. (6)]

Γ1↔2
flip ∝

1

T3

Z
d3kd3pd3qnFðϵkÞ½1þ nBðϵpÞ�½1 − nFðϵqÞ�

jMk→pqj2
ϵkϵqϵp

δð3Þðk − q − pÞδðϵk − ϵq − ϵpÞ; ð10Þ

where the matrix element reads as

jMk→pqj2 ¼ 2e2m2
e
k · p
k2

: ð11Þ

In vacuum, ϵk ¼ jkj and the process is only allowed for
strictly collinear momenta of participating particles.
Because of this kinematical constraint the process has an
extremely unstable phase volume that can even be wiped
out by an infinitesimal deformation of the dispersion curves
of the particles. At the same time, the singularity of the
matrix element (11) at k ¼ 0 leads to a nonintegrable
divergence inside the available phase volume resulting in
an uncertainty of 0=0 type. The resolution of this

FIG. 2. One of the 1 ↔ 2 collinear processes with chirality flip
of the incoming electron (states with different chiralities are
shown in different colors). Although for massless particles the
process has a finite phase space, it is very sensitive to any
modification of the particles’ dispersion relations. This leads to an
uncertainty in the probability of such a process which is
addressed in Ref. [41].
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uncertainty requires consideration of the finite lifetime of
the particles involved in scattering as well as possible
effects resulting from the multiple emission of soft photons
[60–65]. Such an analysis lies outside the scope of the
present work. In Sec. B of the Supplemental Material [45]
we explain why one should expect this contribution to the
chirality flipping rate to be of the same parametric order
as Eq. (9).
For details, we refer the interested reader to our

companion paper, Ref. [41], where we investigate the
chirality flipping rate within the framework of linear
response theory. The leading-order result for the chirality
flipping rate derived in Ref. [41] has the form given in
Eq. (9) with the coefficient C, which is a logarithmically
varying function of α. For α ¼ 1=137 we find

C ≈ 1.17: ð12Þ

Thus, we find that the actual chirality flipping rate (9) is
3 orders of magnitude as high as the previously used naive
estimate Γnaive

flip (see, e.g., Ref. [7]).
Chirality flip across cosmic times.—Our result (9)

enables us to compute the electron-mass induced the
chirality flipping rate in the early Universe at temperatures
T ≳me=

ffiffiffi
α

p
; however, at much higher temperatures one

should take into account other mechanisms responsible for
chirality flipping.
At temperature above the electroweak phase transition

the chirality flipping rate behaves as Γflip ¼ ðTR=M�ÞT,
where M� ¼ MPl=ð1.66 ffiffiffiffiffi

g�
p Þ and TR ∼ 80 TeV [36,37].

The responsible processes are various 2 ↔ 2 scatterings as
well as the Higgs decay. At temperatures well below the
electroweak crossover, weak scatterings preserve chirality
in the limit of zero masses of all fermions. They are
accompanied, however, by the subleading processes where
chirality flips for one of the incoming or outgoing electrons
with the probability proportional to m2

e=hp2i. The corre-
sponding estimate for the reaction rate is given by

Γflip;EW ≃ G2
FT

5

�
me

3T

�
2

: ð13Þ

Unlike the QED case, there is no zero mass singularities
because of the massive intermediate vector bosons. There is
also the contribution to the chirality flipping rate due to the
Higgs (inverse) decay (h ↔ e−Le

þ
R ),

Γflip;H ¼ 3
ffiffiffi
2

p

π5
GFTm2

e

�
πmH

2T

�
5=2

e−mH=T; ð14Þ

where mH is the Higgs boson mass.
These results are summarized in Fig. 3, which demon-

strates that at temperatures T ≲ 80 TeV Γflip always
exceeds the Hubble expansion rate; that the slowest

ΓflipðTÞ occurs at T ≃ 100 GeV and that below 100 GeV
the ratio ΓflipðTÞ=HðTÞ ≫ 1.
Conclusion and outlook.—We have shown that the

chirality flipping processes for electrons in QED plasma
with T ≫ me occur much faster than one would naively
expect: it is proportional to the fine structure constant α,
rather than ∝ α2 (the latter dependence holds, for example,
for chirality-preserving scatterings). We used Boltzmann’s
collision integral to evaluate the contribution of the leading-
order 2 ↔ 2 scattering processes (Fig. 1). As me=T → 0,
the matrix elements for these processes exhibit the infrared
singularity. In order to obtain a meaningful result one has to
proceed beyond tree-level analysis and invoke a partial
resummation of the perturbation theory series. In plasma
such a resummation results in the singularity being regu-
larized not by the mass me but by the thermal mass of the
electronmth ¼ eT=2. Our result in particular means that the
chirality flipping rate is Oð103Þ higher than was previously
believed.
Chiral anomaly provides a coupling between the mag-

netic field and the axial current of electrons via the chiral
magnetic effect [6,54,66]. Such a coupling has, in particu-
lar, been shown to lead to a special form of “inverse
cascade” (transfer of the magnetic energy from smaller to
larger scales) even in the absence of turbulence [6–
8,11,12,15,26]. The inverse cascade is a remarkable exam-
ple of macroscopic manifestation of a microscopic quantum
effect. This mechanism was, in particular, shown to
increase the resilience of macroscopic magnetic fields
against dissipative processes [7,15]. Chirality flipping
suppresses the chiral magnetic effect, therefore it may
switch off the inverse cascade before it completes the
redistribution of energy between the electromagnetic
modes. The present study shows that the accurate descrip-
tion of timescales associated with such counteracting
mechanisms in a plasma requires a good microscopic
understanding of the underlying quantum processes.

FIG. 3. Chirality flipping rates due to different processes in
comparison to the Hubble expansion rate HðTÞ ¼ T2=M� as
functions of temperature.
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Chirality flipping is not the only such mechanism. Recent
microscopic simulations [67–69] hint that the anomaly
induced rate of redistribution of energy between the
electromagnetic modes may significantly exceed its
classical estimate, presumably due to quantum effects
arising at short length scales. These findings call for further
revision of the MHD of axially charged plasmas based on a
first-principles approach along the lines of the
present study.
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