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In this work, we initiate an integrability-based approach to multipoint conformal blocks for higher-
dimensional conformal field theories. Our main observation is that conformal blocks for N-point functions
may be considered as eigenfunctions of integrable Gaudin Hamiltonians. This provides us with a complete
set of differential equations that can be used to evaluate multipoint blocks.
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Introduction.—Conformal quantum field theories
(CFTs) play an important role for our understanding of
phase transitions, quantum field theory, and even the quan-
tum physics of gravity, through Maldacena’s celebrated
holographic duality. Since they are often strongly coupled,
however, they are very difficult to access with traditional
perturbative methods. Polyakov’s famous conformal boot-
strap program provides a powerful nonperturbative handle
that allows one to calculate critical exponents and other
dynamical observables using only general features such as
(conformal) symmetry, locality, and unitarity [1]. The
program has had impressive success in d ¼ 2 dimensions
[2], where it produced numerous exact solutions. During
the past decade, the bootstrap has seen a remarkable revival
in higher-dimensional theories with new numerical as
well as analytical incarnations. This has produced many
stunning new insights—see, e.g., [3] for a review and
references—including record precision computations of
critical exponents in the critical 3D Ising model [4,5].
Despite these advances, it is evident that significant further
developments are needed to make these techniques more
widely applicable, beyond a few special theories.
One promising avenue would be to study bootstrap

consistency conditions for N-point correlators with
N > 4 fields. Note that the success in d ¼ 2 is ultimately
based on the ability to analyze correlation functions with
any number of stress tensor insertions. But the extension of
the bootstrap constraints in d > 2 beyond four-point
functions has been hampered by very significant technical
problems; see [6–18] for recent publications. To overcome
these challenges is the main goal of our work.

The central tool for CFTs, in general, and for the
conformal bootstrap, in particular, are conformal partial
wave expansions. These were introduced in Ref. [19] to
separate correlation functions into kinematically deter-
mined conformal blocks (partial waves) [20] and expansion
coefficients which contain all the dynamical information.
For four-point correlators, the relevant blocks are now well
understood in any d, though only after some significant
effort. Here, we shall lay the foundations for a systematic
extension to multipoint (MP) blocks. Our approach extends
a remarkable observation in Ref. [21] about a relation
between four-point blocks and exactly solvable (integrable)
Schrödinger problems.
To understand the key challenge in developing a theory

of MP conformal blocks, let us consider a five-point
function of scalar fields. In more than two dimensions,
one can build five independent conformally invariant cross
ratios from N ¼ 5 points. Correlation functions can be
evaluated through repeated use of Wilson’s operator
product expansion (OPE). We may picture this process
with the help of an OPE diagram, such as the one shown in
Fig. 1. For N ¼ 5 points, any such diagram contains two
intermediate fields. The scaling weights Δ and spins l of
these intermediate fields provide four quantum numbers.

FIG. 1. OPE diagram for a five-point function. The correspond-
ing five-point conformal block depends on five quantum numbers
which are measured by four Casimir operators and one new
vertex DO.
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This is not sufficient to resolve the dependence of the
five-point function on the five cross ratios. The missing
fifth quantum number is somehow associated with the
choice of so-called tensor structures at the vertices of an
OPE diagram. In the case of the five-point function in
d > 2, the middle vertex in Fig. 1 gives rise to one
additional quantum number. But what precisely is
the nature of this quantum number, and how can it be
measured [22]?
In order to describe our answer, let us turn to the most

basic description of conformal blocks, the so-called shadow
formalism [25]. The latter provides integral formulas for
conformal blocks that are reminiscent of Feynman inte-
grals. Finding analytical expressions in terms of special
functions or even just efficient numerical evaluations
requires significant technology. One crucial tool in the
theory of Feynman integrals is to consider them as
solutions of some differential equations. In their important
work, Dolan and Osborn followed this same strategy and
characterized shadow integrals as eigenfunctions of a
set of Casimir differential operators (DOs) [26]. By study-
ing these differential equations, they were able to harvest
decisive new results on the conformal blocks [26,27].
Shadow integral representations for MP blocks are also

known. In order to evaluate these, one may want to follow
very much the same strategy that was used for four-point
functions. It is indeed relatively straightforward to write
down MP generalizations of the Casimir operators of
Ref. [26]. In the case of five-point functions in d > 2, there
are four of them. Their eigenvalues measure the weight and
spin of the intermediate fields. But, as we explained above,
this is not sufficient. We need one more DO that commutes
with the four Casimir operators to measure a fifth quantum
number. This appears to set the stage for some integrable
system, and indeed, as we shall show below, the four Casimir
operators along with the fifth missing one can be constructed
as commuting Hamiltonians of the famous Gaudin inte-
grable model [28,29], in a certain limit. The statement may
be established more generally, but the five-point function of
scalar fields is the first case for which we have worked out
these DOs explicitly.
Let us now outline the content of this short note. In the

next section, we review how to construct shadow integral
representations for MP functions with a particular focus on
the choice of tensor structures at the vertices. We introduce a
novel basis of three-point tensor structures that enables us to
characterize the shadow integral, and, hence, the blocks, as
common eigenfunctions of a set of five commuting DOs. In
the third section, we explain how these operators can be
constructed systematically from Hamiltonians of the Gaudin
integrable model by taking a special limit. Four of the five
DOs are Casimir operators, while the fifth one measures the
choice of tensor structure. We conclude with an outlook on
our forthcoming paper [30], extensions, and applications to
the higher-dimensional conformal bootstrap.

Multipoint shadow integrals.—In order to state our
results precisely, we shall briefly review some basics of
the shadow integral formalism. The shadow formalism
turns the graphical representation of a conformal block,
such as that in Fig. 1, into an integral formula. Just as in the
case of Feynman integrals, the “shadow integrand” is built
from relatively simple building blocks that are assigned to
the links and three-point vertices in the associated OPE
diagram. For a scalar five-point function, the most com-
plicated vertex contains one scalar leg and two that are
carrying symmetric traceless tensor (STT) representations.
In order to write this vertex, we shall employ polarization
spinors z ∈ Cd (see [31–34]) to convert spinning operators
in STT representations into objects of the form

OΔ;lðx; zÞ ¼ Oν1…νl
Δ;l ðxÞzν1…zνl ≡Oν

Δ;lðxÞzν: ð1Þ

The usual contraction of the STTs can be reexpressed as an
integral over Cd as follows [35]:

OνðxÞO0
νðx0Þ ¼

Z
Cd

d2dzδðz2Þρðz̄ · zÞOðx; z̄ÞO0ðx0; zÞ; ð2Þ

ρðtÞ ¼
�
2

π

�
d−1 ð16tÞ1−d=4

Γðd=2 − 1ÞKðd=2−2Þð2
ffiffi
t

p Þ; ð3Þ

where O and O0 are fields of equal spin and K is the
modified Bessel function of the second kind. In building
shadow integrands, the function ρ plays a role analogous to
the propagator in Feynman integrals. Having now con-
verted field multiplets into functions, the three-point vertex
with one scalar leg and two STT legs takes the form

Φt
acbðx; zÞ ¼ hOΔa;laðxa; zaÞOΔc

ðxcÞOΔb;lbðxb; zbÞi

¼ ðXbc;a · zaÞlaðXca;b · zbÞlb
ðX2

ab;cÞ−Δc=2ðX2
ca;bÞðlb−ΔbÞ=2ðX2

bc;aÞðla−ΔaÞ=2 tðXÞ ð4Þ

if la − lb ∈ 2Z and vanishes otherwise. Here, we have used
the standard notation

Xμ
ij;k ≔

xμik
x2ik

−
xμjk
x2jk

¼ −Xμ
ji;k; X2

ij;k ¼
x2ij

x2ikx
2
jk

; ð5Þ

with xij ¼ xi − xj, and we have dubbed X the unique
independent cross ratio that can be constructed from
ðxa; xb; xc; za; zbÞ:

X ¼ 1

2x4ab

zaμðx2abδμν − 2xμabx
ν
abÞzbν

ðza · Xbc;aÞðzb · Xca;bÞ
: ð6Þ

To a large extent, the function tðXÞ that appears in the three-
point vertex is left undetermined by conformal symmetry.
The only constraints come from the action of the SOðd − 1Þ
subgroup that stabilizes three points in Rd, as well as the
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parity operator in OðdÞ. For parity-even vertices, the
function tðXÞ belongs to the space Wþ

t of polynomials
of the order of at most minðla; lbÞ. Parity-odd vertices
with a single scalar leg exist only in d ¼ 3. In this case,
the function tðXÞ ∈ W−

t must be chosen such that
tðXÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xð1 − XÞp
is a polynomial of the order of at most

minðla; lbÞ − 1. In total, the admissible functions tðXÞ span
a vector space of dimension

nab ¼
X
�

dimW�
t ¼

�
2 minðla; lbÞ þ 1; d ¼ 3;

minðla; lbÞ þ 1; d > 3:
ð7Þ

The integer nab counts the number of three-point tensor
structures [34]. Note that nab ¼ 1 if either la ¼ 0 or lb ¼ 0,
which means that t is a constant factor if there are two or
three scalar legs. We shall therefore simply drop the
corresponding vertex factors t when using formula (4)
for vertices with two scalar legs.
Having described the vertex, we can now write down

(shadow) integrals for any desired N-point function in the
so-called comb channel, in which every OPE includes at
least one of the external scalar fields. For N ¼ 5 external
scalar fields of weightΔi, i ¼ 1;…; 5, the shadow integrals
read

ΨðΔ1;…;Δ5Þ
ðΔa;Δb;la;lb;tÞðx1;…; x5Þ ¼
Y
s¼a;b

Z
Rd

ddxs

Z
Cd

d2dzsδðz2sÞρðz̄s · zsÞΦ12ãðx1; x2; xa; z̄aÞ

×Φt
a3bðxa; x3; xb; za; zbÞΦb̃45ðxb; x4; x5; z̄bÞ: ð8Þ

Here, the tilde on the indices of the first and third vertices
means that we use Eq. (4) for two scalar legs but with Δa
and Δb replaced by d − Δa and d − Δb, respectively.
After splitting off some factor Ω that accounts for the

nontrivial covariance law of the scalar fields under con-
formal transformations,

ΨðΔiÞ
ðΔa;Δb;la;lb;tÞðxiÞ¼ΩðΔiÞðxiÞψ ðΔ12;Δ3;Δ45Þ

ðΔa;Δb;la;lb;tÞðu1;…;u5Þ;

ΩðΔiÞðxiÞ≔ ðX2
23;1ÞΔ1=2

Y4
i¼2

ðX2
iþ1;i−1;iÞΔi=2ðX2

34;5ÞΔ5=2;

with Δij ¼ Δi − Δj as usual, the shadow integral (8) gives
rise to a finite conformal integral that defines the conformal
block ψ as a function of five conformally invariant cross
ratios ui. These integrals depend on the choice of ðΔa; laÞ,
ðΔb; lbÞ, and the function tðXÞ. Our goal is to compute this
uninviting-looking integral.
The strategy we have sketched in the introduction is to

write down five differential equations for these blocks. Four
of these are given by the eigenvalue equations for the
second- and fourth-order Casimir operators for the inter-
mediate channels:

Ds
pψ

ðΔ12;Δ3;Δ45Þ
ðΔa;Δb;la;lb;tÞðuÞ ¼ Cs

pψ
ðΔ12;Δ3;Δ45Þ
ðΔa;Δb;la;lb;tÞ; ð9Þ

where p ¼ 2, 4 and Cs
p denotes the eigenvalue of the pth-

order Casimir operator in the representation ðΔs; lsÞ for
s ¼ a, b. The explicit form of the DOs Ds

p can be worked
out, and the resulting expressions resemble those in
Ref. [26].
But we are missing one more differential equation,

which we shall construct in the next section. It will turn
out that shadow integrals are eigenfunctions of a fifth
DO, provided we prepare a very special basis tnðXÞ,
n ¼ 1;…; nab, in the space of three-point tensor structures.
We can characterize these functions tnðXÞ as eigenfunc-
tions of a particular fourth-order DO:

Hðd;Δi;liÞ ¼ h0ðXÞ þ
X4
q¼1

hqðXÞXq−1ð1 − XÞq−1∂q
X; ð10Þ

where hq ¼ hðd;Δi;liÞ
q are polynomials of the order of at most

three; see Supplemental Material [36] for concrete expres-
sions. The operator H, which has several remarkable
properties, appears to be new. For our discussion, it is
most important to note thatH leaves the two subspacesW�

t
invariant whenever both la and lb are integer. Consequently,
it specifies a special basis tn of functions tðXÞ in the space
of tensor structures:

Hðd;Δi;liÞtnðXÞ ¼ τntnðXÞ; n ¼ 0;…; nab: ð11Þ

Explicit formulas for the eigenvalues τn and the eigen-
functions tnðXÞ can be worked out, and it is this basis of
three-point tensor structures that we will use to write down
differential equations for the associated shadow integrals.
Multipoint blocks and Gaudin Hamiltonians.—Our goal

now is to characterize the shadow integrals through a
complete set of five differential equations. These will take
the form of eigenvalue equations for a set of commuting
Gaudin Hamiltonians. In order to state precise formulas, we
need a bit of background on Gaudin models [28,29]. Let us
begin with a central object, the so-called Lax matrix:

LðwÞ ¼
XN
i¼1

T ðiÞ
α Tα

w − wi
¼ LαðwÞTα: ð12Þ

Here, wi are a set of complex numbers, Tα denotes a basis
of generators of the conformal Lie algebra in d dimensions,
and Tα is its dual basis with respect to an invariant bilinear
form. The object T ðiÞ

α is the standard first-order DO that
describes the behavior of a scalar primary field OðxiÞ of
weight Δi under the conformal transformation generated
by Tα.
Given some conformally invariant symmetric tensor

κp of degree p, one can construct a family HpðwÞ of
commuting operators as [37–39]
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HpðwÞ ¼ κ
α1…αp
p Lα1ðwÞ…LαpðwÞ þ � � � ; ð13Þ

where the dots represent correction terms expressible as
lower-degree combinations of the Lax matrix components
LαðwÞ and their derivatives with respect to w. For p ¼ 2,
such correction terms are absent. The correction terms are
necessary to ensure that the families commute:

½HpðwÞ;Hqðw0Þ� ¼ 0; ð14Þ

for all p, q and all w;w0 ∈ C. In the case where d ≥ 3, the
conformal algebra possesses two independent invariant
tensors of second and fourth degree [40]. We therefore
obtain two families of commuting DOs that act on
functions of the coordinates xi.
It is a well-known fact that these families commute with

the diagonal action of the conformal algebra, i.e.,

½T α;HpðwÞ� ¼ 0; where T α ¼
XN
i¼1

T ðiÞ
α : ð15Þ

Hence, the commuting families HpðwÞ of operators
descend to DOs on functions ψðuÞ of the conformally
invariant cross ratios u.
The functions HpðwÞ provide several continuous fam-

ilies of commuting operators. Only a finite set of these
operators are independent. There are many ways of con-
structing such sets of independent operators, e.g., by taking
residues of HpðwÞ at the singular points to give just one
example. For the moment, any such set still contains N
parameters wi, i ¼ 1;…; N. Without loss of generality, we
can set three of these complex numbers to some specific
value, e.g., w1 ¼ 0, wN−1 ¼ 1, wN ¼ ∞, so that we remain
with N − 3 complex parameters our Gaudin Hamiltonians
depend on.
Now we adapt the Gaudin model to the study of MP

blocks. In the latter context, we insist that the set of
commuting operators we work with allows us to measure
the weights Δ and spins l of fields that are exchanged in
intermediate channels, as do the MP Casimir operators. So,
in order for the Gaudin Hamiltonians to be of any use to us,
we must ensure that they include all such Casimir oper-
ators. For this to be the case, we are forced to make a very
special choice of the remaining parameters wr and to
consider specific limits of these parameters [41]. Let us
explain this here for N ¼ 5. Setting w2 ¼ ϖ2 and w3 ¼ ϖ,
we can define

H̃pðwÞ ≔ lim
ϖ→0

ϖpHpðϖwÞ; p ¼ 2; 4: ð16Þ

The new functions H̃p take values in the space of pth-order
DOs on cross ratios. They possess singularities at three
points only, namely, at w ¼ 0; 1;∞. Let us note that taking

the limit ϖ → 0 does not spoil commutativity of these
Hamiltonians.
After performing the special limit on the parameters wr,

we can now extract the MP Casimir operators rather easily.
In fact, it is not difficult to check that

Da
p ¼ lim

w→0
wpH̃pðwÞ; Db

p ¼ lim
w→∞

wpH̃pðwÞ ð17Þ

for p ¼ 2, 4. Any additional independent operator we can
obtain from H̃pðwÞmay be used to measure a fifth quantum
number. One can show that the two second-order Casimir
operators Ds

2; s ¼ a, b exhaust all the independent oper-
ators that can be obtained from H̃2ðwÞ. The family H̃4ðwÞ,
on the other hand, indeed supplies one independent
operator in addition to the fourth-order Casimir operators
Ds

4, s ¼ a, b. We propose to use the operator V4 defined
through

H̃4ðw ¼ 1=2Þ ¼ 16V4 þ � � � ; ð18Þ

where the dots represent quadratic terms coming from the
corrections in Eq. (13). In the particular limit ϖ → 0 that
we consider here, these corrections can be reexpressed in
terms of the quadratic CasimirsDs

2, s ¼ a, b, and can, thus,
be discarded without spoiling commutativity of V4 with the
Casimirs. An explicit computation then shows that V4 is
expressed in terms of the conformal generators T ðiÞ

α as

V4¼ κα1…α4
4 Sα1…Sα4 ; Sα¼T ð1Þ

α þT ð2Þ
α −T ð3Þ

α : ð19Þ

The explicit form of V4 as a DO acting on functions ψðuÞ of
five cross ratios will be spelled out in our forthcoming
publication [30]. Our central claim is that the five-point
shadow integrals ψ we discussed in the previous subsection
are joint eigenfunctions of the four Casimir operators [see
Eq. (9)] and of the vertex operator we defined through
Eq. (18):

V4ψ
ðΔ12;Δ3;Δ45Þ
ðΔa;Δb;la;lb;tnÞðuÞ ¼ τnψ

ðΔ12;Δ3;Δ45Þ
ðΔa;Δb;la;lb;tnÞðuÞ; ð20Þ

where the eigenvalues τn coincide with those that appeared
in Eq. (11) when describing the particular choice of a basis
tnðXÞ of tensor structures. These five differential equations
characterize the shadow integral completely.
Before we conclude, let us briefly sketch how the above

exposition extends to the comb channel of N-point func-
tions in arbitrary dimension d. In this case, the Lax matrix
(12) of the Gaudin model depends on N complex para-
meters wi. We can set three of these to the values w1 ¼ 0,
wN−1 ¼ 1, and wN ¼ ∞ before scaling the remaining ones
as wi ¼ ϖN−i−1, i ¼ 2;…; N − 2, in terms of a single
complex parameter ϖ that we send to zero. Generalizing
our construction of the commuting families of operators in
Eq. (16), we now introduce
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H̃½r�
p ðwÞ ≔ lim

ϖ→0
ϖðN−r−2ÞpHpðϖN−r−2wÞ; ð21Þ

where p ¼ 2; 4;… enumerates the different (Casimir)
invariants of the d-dimensional conformal algebra and
w ∈ C is the spectral parameter. Through the label
r ∈ f1;…; N − 2g we characterize different ways to per-
form the scaling limit of the original Gaudin Hamiltonians.
It is not difficult to show that the resulting family of
commuting Hamiltonians includes all the Casimir operators
that are needed to measure the weight and spin of
intermediate fields, similarly to Eq. (17). The other
Hamiltonians extracted from the families (21) then provide
additional commuting operators characterizing the vertices
in the N-point conformal block (note that the range of our
index r indeed allows us to enumerate these vertices). One
thereby expects to complete the full set of Casimir
operators into a system of independent commuting
operators that suffices to characterize the dependence of
N-point comb channel blocks on all conformal cross ratios,
for arbitrary dimension d and arbitrary choice of repre-
sentations for external fields. We have checked this claim
for various choices of N and d.
For d ¼ 3, an N-point function with scalar external

fields involves 3N − 10 cross ratios. The intermediate
fields in the comb channel OPE diagram are characterized
by 2N − 6 Casimir operators, of degree two and four.
In addition, each of the N − 4 internal vertices is associated
with an operator V ½r�

4 , extracted similarly to V4 in
Eq. (18) as

H̃½r�
4 ðw ¼ 1=2Þ ¼ 16V ½r�

4 þ � � � ; ð22Þ

where r ∈ f2;…; N − 3g [48]. The spectrum of theseN − 4
operators is independent of r and is still given by the
eigenvalues τn we introduced in the second section. With
the additional index r ∈ f2;…; N − 3g on the left-hand side
of the vertex eigenvalue equation (20), we obtain enough
differential equations to characterize three-dimensional
N-point blocks in the comb channel.
Conclusions and outlook.—In this work, we initiated a

systematic construction of MP conformal blocks in d ≥ 3.
Our advance relies on a characterization of MP conformal
blocks as wave functions of Gaudin integrable models,
which extends a similar relation between four-point blocks
and integrable Calogero-Sutherland models uncovered in
Ref. [21]. More specifically, we have explained that, for a
very special choice of tensor structures at the 3-vertices Φ
in the shadow integrand of Eq. (8), the corresponding
shadow integral becomes a joint eigenfunction of a com-
plete set of commuting DOs. The latter are Hamiltonians of
special limits of the Gaudin model.
While we have explained the main ideas within the

example of five-point functions, the strategy and, in
particular, the relation with Gaudin models are completely
general; i.e., it extends to N > 5 and even spinning external

operators, with appropriate changes (see, for instance, the
end of the third section for the comb channel case). Starting
from six points, there exist topologically distinct channels
that can include vertices in which all three legs carry spin,
such as the so-called snowflake channel for N ¼ 6 [12].
Such vertices involve functions t of several variables, and,
hence, the choice of basis in the space of tensor structures
needs to be extended. As we increase the dimensions d,
links can carry new representations beyond STT. Treating
more generic links requires us only to consider higher-order
Casimir operators. Through the relation to Calogero-
Sutherland models [21], their solution theory is well
known; see, e.g., [49]. In this sense, links do not pose a
significant new complication for the construction of MP
blocks in any d.
In forthcoming work [30], we will explain in detail how

to construct the vertex DOs, for both the shadow integrand
and the shadow integral, and we shall spell out explicit
formulas for all five DOs that characterize the shadow
integrals for five-point functions. This can then serve as a
starting point to evaluate five-point blocks explicitly, e.g.,
through series expansions or Zamolodchikov-like recursion
formulas, similar to those used for four-point blocks
[27,49–53].
Obviously, it would be very interesting to extend these

constructions of DOs to six-point blocks, to develop an
evaluation theory, and to initiate a MP bootstrap for d > 2.
As we have argued in the introduction, taking bootstrap
constraints from MP correlation functions seems like a
good strategy. Key examples for initial studies include the
OðnÞ Wilson-Fisher fixed points with n ¼ 2, 3 that
describe the λ point in helium or the ferromagnetic phase
transition, respectively. The current state of the art for n ¼
2 was set recently in Refs. [54,55], using four-point mixed
correlator and analytic bootstrap. Since six-point functions
of a single scalar field contain the information of infinitely
many mixed four-point functions, the MP bootstrap for
N ¼ 6 can be expected to provide significantly stronger
bounds.
Recently, Bercini, Gonçalves, and Vieira issued the

paper [18] in which they initiate a MP light-cone bootstrap.
With the techniques we propose here, it should be possible
to study light-cone blocks along with systematic correc-
tions in the vicinity of the strict light-cone limit and for any
desired channel. We will come back to these topics in
future work.

We are grateful to Gleb Arutyunov, Aleix Gimenez-
Grau, Mikhail Isachenkov, Madalena Lemos, Pedro
Liendo, Junchen Rong, Joerg Teschner, and Benoît
Vicedo for useful discussions. This project received fund-
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