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We use a reinforcement learning approach to reduce entropy production in a closed quantum system
brought out of equilibrium. Our strategy makes use of an external control Hamiltonian and a policy gradient
technique. Our approach bears no dependence on the quantitative tool chosen to characterize the degree of
thermodynamic irreversibility induced by the dynamical process being considered, requires little knowl-
edge of the dynamics itself, and does not need the tracking of the quantum state of the system during the
evolution, thus embodying an experimentally nondemanding approach to the control of nonequilibrium
quantum thermodynamics. We successfully apply our methods to the case of single- and two-particle
systems subjected to time-dependent driving potentials.
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The design, development, and optimization of quantum
thermal cycles and engines is one of the most active and
attention-catching research strands in the burgeoning field
of quantum thermodynamics [1–4]. In addition to being
one of the most important applications of thermodynamics,
thermal engines play also a fundamental role in the
development of the theory of classical thermodynamics
itself. It is thus not surprising that the community working
in the field that explores the interface between thermo-
dynamics and quantum dynamics is very interested in
devising techniques for the exploitation of quantum advan-
tages for the sake of realizing quantum cycles and machines
[3–5]. The overarching goal is to operate at much smaller
scales than classical motors and engines and enhance the
performance of such devices so as to reach classically
unachievable efficiencies [1,6–8].
However, the quasistatic approximation that allows us to

describe thermodynamic transformations with an equilib-
rium theory does not hold for real finite-time thermal
engines, which operate in nonequilibrium conditions. This
is even more true for quantum engines: in order to exploit
the potential benefits of quantum coherences, such
devices should operate within the coherence time of the
platforms used for their embodiment, which might be very
short [5,9,10]. Any finite-time process gives rise to a
certain degree of irreversibility, as quantified by entropy
production, which enters directly into the thermodynamic
efficiency of the process, limiting it [11]. Therefore, the
control of nonequilibrium quantum processes is an impor-
tant goal to achieve to enhance the efficiency of quantum
engines [12].
For a closed system, a well-known quantum control

approach consists of shortcuts-to-adiabaticity (STA)

[13,14]. This approach has been successfully applied to
various platforms [15–21], and the possible application of
STA to nonequilibrium thermodynamics has been explored
[12,22–27]. However, it bears considerable disadvantages
as it requires extensive knowledge of the system dynamics.
It is thus difficult to use STA as on-the-run experimental
procedures. Moreover, they do not allow for the choice
of the function characterizing the dissipative processes
for the system, and it is currently very difficult to
incorporate in a working STA protocol any constraint on
the energetic cost of its implementation [28,29]. Therefore,
alternative approaches are necessary to improve our control
power over quantum systems subjected to nonequilibrium
processes.
A possible approach to this problem is the use of

machine learning techniques currently employed in a
growing number of problems. In particular, quantum
physics is benefiting from machine learning in many ways
in light of their capability to approximate high-dimensional
nonlinear functions that would be difficult to infer other-
wise. Numerous applications have been developed, ranging
from phase detection [30,31] to the simulation of stationary
states of open quantum many-body systems [32], from the
research of novel quantum experiments [33] to quantum
protocols design and state preparation [34–38], and from
the learning of states and operations [39–41] to the
modeling and reconstruction of non-Markovian quantum
processes [33,42]. In particular, problems of planning or
control can be successfully addressed through reinforce-
ment learning (RL) [43].
In this Letter, we extend the range of quantum problems

that can be tackled with machine learning approaches
by demonstrating their successful use in the study of
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nonequilibrium thermodynamics of quantum processes. In
particular, we propose an approach to reduce energy
dissipation and irreversibility arising from a unitary work
protocol using RL. Specifically, we employ a policy
gradient technique to tackle out-of-equilibrium work-
extraction protocols whose thermodynamic irreversibility
we aim at reducing. Our methodology allows us to address
this problem with only little knowledge of the system
dynamics and to choose how to quantify dissipations. Our
Letter provides a significant contribution to the develop-
ment of control strategies tailored for physically relevant
nonequilibrium quantum processes, thus complementing
the scenario drawn so far and based on optimal control
and STA.
Background on reinforcement learning.—In the RL

setting, an agent dynamically interacts with an environ-
ment and learns from such interaction how to behave in
order to maximize a given reward functional [43,44]. The
process is typically divided in discrete interaction steps:
at each step i, the agent makes an observation of the
environment state si and—based on the outcomes of their
observations—takes an action ai. Based on this action, the
environment state is updated to siþ1 and we repeat the
procedure for the new step. This is iterated for a given
number of steps or until we reach a certain state, when a
third party (an interpreter) provides the agent with a
reward Rðs0; a0; s1; a1;…Þ. Based on their past behavior
and the states of the environment, the agent changes the
way further actions are chosen so as to maximize the
future reward (cf. Fig. 1). This procedure is repeated for
many epochs until, if possible, the agent learns how to
reach the maximum reward.
If the environment is completely observable, at each step

the agent’s action and the reward depend only on the
observation at the current step and the process is said to be a
Markov decision process (MDP). In this case, we can
describe the behavior of the agent using a policy function
πðaijsiÞ. This represents the probability for the agent to
choose the action ai, given the state si of the environment.

In a policy gradient approach, we parametrize the policy
function πθðaijsiÞ with a set of parameters θ, and change
them accordingly to the reward. This can be done using a
gradient ascent algorithm. If the reward is given to the agent
at the end of each epoch, as in our case, the gradient ascent
reads [45]

Δθ ¼ ηR
X
ai

∇θ log πθðai; siÞ; ð1Þ

where η is the learning rate and the sum is calculated over
the actions taken in any given trajectory faigi.
For a continuous action space, we assume a certain shape

for the policy function and use a function approximator for
one or more parameters of the probability distribution [43].
Here we assume the policy function to be a Gaussian and
take

πθðai ¼ ajsi ¼ sÞ ¼ exp
�
−
½a − μθðsÞ�2

2σ2

�
=ðσ

ffiffiffiffiffiffi
2π

p
Þ; ð2Þ

where we treat σ as an external parameter and use a neural
network for the parametrization of μ. Based on our choice
for πθðaijsiÞ, the condition in Eq. (1) is satisfied if
the neural network is trained with a stochastic gradient
descent method over the batch using the cost func-
tion C ¼ ð1=2σ2ÞPai Rjai − μθðsiÞj2.
Physical system and methodology.—Let us consider a

closed quantum system evolving under a time-dependent
Hamiltonian HSðtÞ within the time interval ½0; τ�. We want
to control the system evolution using an additional
Hamiltonian HoptðtÞ such that Hoptð0Þ ¼ HoptðτÞ ¼ 0.
For simplicity, we consider HoptðtÞ ¼ foptðtÞMopt

where the operator Mopt is kept fixed and we control
the function foptðtÞ [enforcing the boundary conditions
foptð0Þ ¼ foptðτÞ ¼ 0 so as to fulfill the requests made on
the Hamiltonian] to optimize the process. The total
Hamiltonian of the system during its evolution is thus

HðtÞ ¼ HSðtÞ þ foptðtÞMopt: ð3Þ

We divide the system evolution in a certain number of
discrete time steps. At each step ti, the agent makes an
observation si and chooses an action ai. This is done by
extracting a random number according to Eq. (2),
based on the prediction of the neural network for
μθðsiÞ. We then take foptðtÞ ¼ ai in the interval ½ti; tiþ1½.
We limit the maximum and minimum output of the
network jμθðsiÞj < μ� so that we can control the maximum
amount of energy spent for the optimization. This is
important when dealing with thermal engines, as we want
to spend less energy for the control than what we extract
from the process. This is done in parallel for a batch of
systems and, at the end of the evolution, the neural
network is trained on this batch and the corresponding

FIG. 1. Principles of RL: at the ith step of the protocol, an agent
observes an environment, acquiring its state si, upon which he
decides to implement action ai. As a result, the state of the
environment is updated to siþ1. Based on the actions of the agent
and the states of the environment, an interpreter decides to grant
the agent a reward R, which the agent aims to maximize.
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rewards. The procedure is repeated for many epochs, each
time resetting the system and the Hamiltonian to the
original state and value. The process is run again and the
value of foptðtÞ maximizing the reward over the batch is
chosen.
We now comment on the quantifier of irreversibility

addressed in our Letter and the different approaches that we
will consider to reduce the system dissipations. The first
approach aims to reduce the mean entropy production of
the system [1,2,46–49], calculated as the relative entropy
between the final state of the system ρðτÞ and the
corresponding instantaneous thermal equilibrium state
ρeqðtÞ ¼ e−βHSðtÞ=ZSðtÞ with ZSðtÞ ¼ tr½e−βHSðtÞ� as the
partition function of the system. We thus consider

Σ ¼ S½ρðτÞjjρeqðτÞ�; ð4Þ

where SðσjjχÞ ¼ tr½σðlog σ − log χÞ� is the quantum rela-
tive entropy [50]. For this purpose, we use a dense-layers
neural network [51] taking as inputs the time step and the
density matrix. In this case, the agent reward is R ¼ −Σ,
which suits our goal well: the agent is rewarded by reducing
the degree of irreversibility of the process.
In the second approach, we assume to measure the

energy of the system before the evolution [52,53]. We
consider the case of nondegenerate energy levels and use as
reward the square root of the fidelity between the final state
of the system and the corresponding adiabatic final state,
thus having R ¼ jhϕðtÞjϕadðtÞij. This approach too benefits
of the use of a dense-layers neural network with inputs
embodied by the time step and the (pure) quantum state of
the system.
The third approach uses the same ideas laid out above.

However, this time we want the model to be useful as a
control technique even when we are not able to simulate or
track the dynamics of the system. We thus use a different
input, while still considering the MDP.We use a long-short-
term-memory (LSTM) neural network [45] taking as inputs
the energy measured at the beginning of the evolution and
the time steps.
If the observation of our agent at a given time step

contains all the information about the initial state of the
system and the control term of the Hamiltonian at any
previous time, the knowledge of the current quantum state
is no longer required in order to have a MDP. However, we
can avoid using such a large input at each step if we use a
LSTM network instead. The output of a LSTM network
does not only depend on the input at a given time step, but
also on all the previous inputs and outputs. Such neural
networks can retain long-term dependencies and are widely
used for tasks that involve sequential data, such as speech
recognition.
For these reasons, we just need to take measurements at

the beginning and the end of the evolution. Needless to say,
this embodies a significant reduction on the practical

complexity of the control protocol, as the scheme only
requires two measurements and thus leaves room for a
nondemanding experimental implementations that does not
need to track the evolution of the system.
For inaccessible initial states of the system, or should one

want to avoid performing a measurement at the start of the
dynamics, if we assume the initial density matrix of the
system to be always the same, we can still use a LSTM
network in a way similar to the first approach, with just the
time steps as inputs and a reward R ¼ −Σ. The advantage
of our approach with respect to other techniques lies on the
number of runs needed to achieve good performances,
which is significantly smaller than what is needed
from standard numerical optimization (see Supplemental
Material [54] for details).
Case studies.—We now apply our methods to simple

yet physically relevant models. We address the cases
of a single spinlike system exposed to a time-dependent
field and a two-spin model with a time-dependent
coupling.
Single spin-1=2 particle in a time-dependent field: Let us

consider a qubit evolving in the interval t ∈ ½0; τ� under a
Hamiltonian (we take units such that ℏ ¼ 1),

HSðtÞ ¼ ½σxBxðtÞ þ σzBzðtÞ�=2; ð5Þ

with B2
xðtÞ þ B2

zðtÞ ¼ B2
0 ∀ t ∈ ½0; τ�, thus modeling a spin

subjected to a rotating magnetic field. We assume that the
system is initialized in a thermal state at inverse tempera-
ture β. This is relevant only when we do not take an
energy measurement at the beginning of the evolution.
Our optimization Hamiltonian is HoptðtÞ ¼ −foptðtÞσy, so
that HðtÞ ¼ HSðtÞ − foptðtÞσy.
We start with the first approach, introduced in the

previous section, that aims to reduce the relative
entropy. We introduce the entropy production reduction
ΔΣ ¼ 1 − Σopt=Σfree, where Σopt is given by Eq. (4) and
Σfree is associated with the case without optimization term
in the Hamiltonian. Likewise, the reduction of the work
done on the systems is ΔW ¼ 1 − ðΔUopt þ EinÞ=ΔUfree,
where Ein is an estimation of the energy spent for the
optimization, defined as [22]

Ein ¼
����
Z

1

0

tr½ρðtÞfoptðtÞσy�dt
����; ð6Þ

and ΔU is the change of the internal energy UðtÞ ¼
tr½ρðtÞHðtÞ� of the system between initial and final
state.
As our control process starts only after a measurement,

the second approach to the quantification of irreversibility
gives additional information about the system. Our foptðtÞ
then depends on the initial state. Based on our knowledge
of the initial pure state of the system, we want the final
state as close as possible to the adiabatic one [that is, the
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corresponding eigenvector of HSðτÞ]. Therefore, our per-
formance measure for this approach will be the fidelity of
the final state with the adiabatic target jhϕðτÞjϕadðτÞij2. For
the third approach, we solve the previous problem, this time
with a LSTM neural network, as discussed in the physical
system and methodology section.
We divided the dynamics of our system in 10 steps and

set μ� ¼ 3. We considered BxðtÞ ¼ B0 sinðπt=2τÞ in
Eq. (5). For each of the RL methods considered here,
we ran 20 simulations of a training consisting of 300
epochs with a batch of 30 systems. In Fig. 2 we show a
typical example of a learning curve with successful train-
ing. Using the first approach with an initial thermal state
with β ¼ 1, we successfully reduced both the relative
entropy ΔΣ ¼ ð99� 1Þ% and the work done on the system
ΔW ¼ ð91� 9Þ%. Examples of foptðtÞ are given in
Fig. 3. When the second approach to irreversibility was
used, we obtained the fidelity with the adiabatic target
FadðτÞ ¼ jhϕðτÞjϕadðτÞij2 ¼ 0.997� 0.002. In Fig. 4 we
show an example of foptðtÞ for this case. Finally, for the
third approach, we obtained FadðτÞ ¼ 0.998� 0.001.
We have rounded our analysis by running a single

simulation for a different choice of time-dependent field,
namely BxðtÞ ¼ B0 sin½ðπ=2Þsin2ðπt=2τÞ�, obtaining a

value of the adiabatic fidelity as large as FadðτÞ ≈ 0.998.
The corresponding functions foptðtÞ are shown in Fig. 5.
Time-dependent coupling of spin-1=2 particles: We now

consider a slightly more complicated system composed of
two two-level systems with Hamiltonian

HSðtÞ ¼ σ1z þ
1

2
σ2z þ JðtÞðσ1xσ2x þ σ1yσ

2
yÞ; ð7Þ

where the coupling strength JðtÞ evolves in the time
interval t ∈ ½0; τ�. We start with both spins in a thermal
state with an inverse temperature β. Our control term is

HoptðtÞ ¼ foptðtÞðσ1xσ2y − σ2yσ
1
xÞ=2: ð8Þ

We aim at minimizing Eq. (4), this time using a LSTM
neural network, as described in the physical system
and methodology section. As the variation in the free
energy between the initial and final state [46,48,49]
ΔF ¼ ΔU − Σ=β for both the free and the optimized
process must be the same, we set the error in our energy
measurements to be the difference in this quantity for the
two processes.
We ran a simulation where the dynamics of our system is

divided in 10 steps and took μ� ¼ 3. We used a batch of 30
systems and considered 100 epochs, choosing the time-
dependent coupling rate J1ðtÞ ¼ χðt=τ − 0.5Þ with χðt −
t0Þ ¼ 1 at t ¼ t0 and being null otherwise. We have also
considered J2ðtÞ ¼ sin½π=2 − ðπ=2Þ cosðπt=2τÞ�, both for
an initial thermal state with β ¼ 1. Our results are shown in
Fig. 6 and Table I. A successful reduction of entropy
production is achieved in both cases. Moreover, the entropy
production Σopt for both optimized processes takes very
similar values. Similar considerations hold for ΔUopt. This
is encouraging, although not surprising, as for both
processes we have Jð0Þ ¼ 0 and JðτÞ ¼ 1, so that the
corresponding adiabatic process is the same, and we have,
in fact, the same ΔF.
Next, using J1ðtÞ, we changed the temperature of the

initial state of the system in the range β ∈ ½0.1; 2.1�,
dividing this interval in 20 steps. Running a single

FIG. 4. (a) [(b)] example of foptðtÞ for an initial j↑i [j↓i] state
of HSð0Þ. Here, σzj↑i ¼ j↑i, while σzj↓i ¼ −j↓i. The corre-
sponding fidelity with the targets is 0.997.

FIG. 2. (a) Average reward over the batch and 30 epochs as a
function of the number of epochs of training. (b) Fluctuations
around the average reward. The asymptotic behavior of both
curves demonstrates success of the training.

FIG. 3. We show the form taken by foptðtÞ for two different runs
of the optimization process. Although they both reduce the
entropy production of approximately the same amount
[99.86% in (a) and 99.80% in (b), respectively], the trends
followed by the control function are visibly different.
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simulation for each value of β, we obtained a mean entropy
production reduction ΔΣ ≈ 36% in this interval.
Conclusions.—We have proposed and benchmarked a

technique based on a deep RL approach to reduce the
degree of irreversibility resulting from a nonequilibrium
thermodynamic transformation of a closed quantum sys-
tem. Our method can be used with an arbitrary choice of the
function characterizing the dissipative process undergone
by the system and requires little knowledge of the system
dynamics. Moreover, it can be applied without tracking the
state of the system during the evolution, thus potentially
easing any experimental implementations.
We applied our technique to two simple yet relevant

problems: we successfully reduced the entropy production
and the distance of the final state from the adiabatic target
for a spin-1=2 particle subjected to a time-dependent
magnetic field and the entropy production resulting from
the time-dependent coupling between two spin-1=2 par-
ticles. Although we focused on simple models, it would be
interesting to apply the proposed approach to many-body
quantum systems. This could help significantly in the
development of an efficient mesoscopic thermal engine
operating under realistic conditions. In particular, our third
approach could be advantageous when tackling high-
dimensional systems. However, such systems will still
embody a challenge, as they could require a large number
of control terms, and the optimization would still suffer
from the increase of dimensionality of the agent actions
space. This could lead to a decrease in the performances or

at least to an increase in the number of experiments
required for a successful optimization, which are issues
that we will address in future. A natural further develop-
ment of our study would be the extension to open quantum
systems dynamics.
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