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The problem of simulating complex quantum processes on classical computers gave rise to the field of
quantum simulations. Quantum simulators solve problems, such as boson sampling, where classical
counterparts fail. In another field of physics, the unification of general relativity and quantum theory is one
of the greatest challenges of our time. One leading approach is loop quantum gravity (LQG). Here, we
connect these two fields and design a linear-optical simulator such that the evolution of the optical quantum
gates simulates the spin-foam amplitudes of LQG. It has been shown that computing transition amplitudes
in simple quantum field theories falls into the bounded-error quantum polynomial time class, which
strongly suggests that computing transition amplitudes of LQG are classically intractable. Therefore, these
amplitudes are efficiently computable with universal quantum computers, which are, alas, possibly decades
away. We propose here an alternative special-purpose linear-optical quantum computer that can be
implemented using current technologies. This machine is capable of efficiently computing these quantities.
This work opens a new way to relate quantum gravity to quantum information and will expand our
understanding of the theory.
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Introduction.—Linear optics promises a great opportu-
nity to implement and execute quantum protocols in order
to accomplish quantum computational and quantum
information processing tasks [1,2]. Photons are also the
fastest qubits—a crucial property for quantum communi-
cation [3]—and their easy manipulation makes them ideal
for quantum sensing applications as well [4,5]. In addi-
tion, linear optics has been shown to be useful for
entangled-state preparation [6] and quantum circuit prepa-
ration [7] with applications to, e.g., one-way quantum
computing [8–10].
Simulations of complex quantum systems are inefficient

while running on conventional computers [11]. However,
efficient quantum simulations are within reach if run on
near-term quantum computers or quantum simulators
[12,13]. Several protocols for efficient quantum simulations
are realizable using linear optics [14–16]. One distin-
guished example—boson sampling—has been demonstrated
[17–20]. That work has led to a boson-sampling-inspired
algorithm for simulating vibrational states of molecules [21].

Quantum simulators also have applications in funda-
mental physics such as efficient simulation of quantum
field theories [22–24]. Indeed, S. P. Jordan et al. [23] have
recently shown that computing even simple quantum field-
theoretic transition amplitudes falls within the computa-
tional complexity bounded-error quantum polynomial
time class. This result strongly suggests that computing
the transition amplitudes of, say, loop quantum gravity
(LQG)—a more complicated quantum field theory—also
falls into this class.
We therefore anticipate that LQG amplitudes, specifi-

cally spin-foam amplitudes, are efficiently calculable on
universal quantum computers, which may be decades away.
Contrariwise, in this Letter, we design a special-purpose
linear-optical quantum computer able to compute the spin-
foam amplitudes of LQG efficiently. Since the spin-foam
amplitudes are related to many key issues in LQG—e.g.,
the semiclassical limit, the continuum limit, and many key
physical predictions—our results may shed light on fun-
damental aspects of quantum gravity.
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LQG is a background-independent and nonperturbative
approach to the theory of quantum gravity [25–27]. As
LQG analogs of Feynman path integrals for quantum
gravity, spin-foam amplitudes are transition amplitudes
for the evolution of LQG quantum geometry states
[28–30]. The spin-foam amplitude plays the central role
in the covariant dynamics of LQG in 3þ 1 dimensions.
The spin-foam amplitude is a network of quantum gates,

which are quantum transitions of LQG quantum geometry
states within Planck-scale volume regions [31]. Matrix
elements of these quantum gates are called vertex ampli-
tudes (see Fig. 1). This feature of spin-foam amplitude
shares a similarity with systems in quantum computation
and allows spin foams to be demonstrated on a quantum
simulator device (see, e.g., [32,33] for existing studies
relating LQG to quantum computation).
Here, we develop a new relation between the spin-foam

LQG and a linear-optical quantum simulator. Based on this
relation, we design a special-purpose linear-optical device
for simulating spin-foam amplitudes (Fig. 1). In our
simulation, we map LQG quantum tetrahedron geometries
to qubits and photon modes. We encode the spin-foam
vertex amplitude in an optical quantum circuit, which is
designed as a chain of linear-optical unitary operations
followed by postselection. This optical quantum circuit can
be implemented on a chip, which is within the capability of
current experiments [6] and permits the simulation of spin-
foam amplitudes with many vertices due to the inherent
scalability of linear-optical quantum information process-
ors. Our work will shed light on computing spin-foam
amplitudes with multiple vertices, which is incomputable
with classical numerical computation.
Our simulation has a broad applicability as it is valid for

spin-foam amplitudes for all j ≥ 1=2. It can also be applied
to simulate tensor-network models that share similar
structures as spin foams and were used to explore various
aspects of topological quantum field theories.
Quantum tetrahedra and the spin-foam vertex amplitude.—

Among important quantum geometry states in LQG, a
quantum tetrahedron is a tensor state jψi ∈ Hj1 ⊗ � � � ⊗
Hj4 . [Hj is the SU(2)-irreducible representation labeled by
spin-j.] The state satisfies the following constraint equation:

½Ĵð1Þ þ Ĵð2Þ þ Ĵð3Þ þ Ĵð4Þ�jψi ¼ 0; ð1Þ

where ĴðiÞ ¼ ðĴx; Ĵy; ĴzÞðiÞ is the angular-momentum
operator acting on Hji . The ĴðiÞ quantizes the oriented area
EðiÞ ¼ ðEx;Ey;EzÞðiÞ of the ith tetrahedron face (i¼ 1;…;4)
[32,34,35] [see Fig. 1(a)]. jEðiÞj and EðiÞ=jEðiÞj are the area
and unit normal of the ith face. Equation (1) quantizes
the geometrical constraint Eð1Þ þEð2Þ þ Eð3Þ þEð4Þ ¼ 0,
meaning that the 4 tetrahedron faces form a closed surface.
We denote by Htet the Hilbert space of all jψi satisfying
Eq. (1). Htet ¼ InvSUð2ÞðHj1 ⊗ � � � ⊗ Hj4Þ is the space of
invariant tensors of SU(2). The spin ji is associated with the

ith face of the tetrahedron. Quantum tetrahedra are funda-
mental building blocks of quantum spatial geometries, since
any geometry can be triangulated by tetrahedra. When
j1 ¼ � � � ¼ j4 ¼ 1=2, dimðHtetÞ ¼ 2, a quantum tetrahedron
jψi can be described by a single qubit.
Spin-foam amplitudes describe the evolution of quantum

geometry states. The spin-foam amplitude is defined on a
triangulation of a four-dimensional (4D) manifold, while
its building block—vertex amplitude Aσ—associates to a
4-simplex σ, the elementary cell of the 4D triangulation.

(a)

(b)

(c)

FIG. 1. From spin-foam amplitudes to quantum gates. (a) A 4-
simplex whose boundary is made by 5 tetrahedra. Each tetrahe-
dron is quantized to jψ ii ∈ Htet (i ¼ 1;…; 5). EðiÞ is the oriented
area vector of the ith tetrahedron face and is quantized as
quantum angular momenta. (b) The quantum gate A with 3 input
quantum tetrahedra and 2 output. We note that at least 3 qubits are
needed to operate this nonunitary gate and even more if a unitary
expansion of the gate is used. The spin-foam vertex amplitude is
the matrix element of A. (c) An example of LQG spin-foam
amplitude made by connecting 5 quantum gates A. Postselection
and feed forward make simulation of this spin-foam amplitude
possible with a linear-optical quantum computer [2].
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The 4-simplex σ is a 4D region whose boundary is a
three-dimensional (3D) closed surface made by 5 tetrahedra
[Fig. 1(a)]. We can choose to view σ as a time evolution
from 3 tetrahedra in the past to 2 tetrahedra in the future
[36]. These tetrahedra carry quantum geometries jψ ii ∈
Htet (i ¼ 1;…; 5). Aσ is a quantum transition amplitude
from 3 initial quantum tetrahedra jψ1i; jψ2i; jψ3i to 2 final
tetrahedra jψ4i; jψ5i. This quantum transition can be
formulated as a quantum gate A: Htet ⊗ Htet ⊗ Htet →
Htet ⊗ Htet [Fig. 1(b)]. The vertex amplitude Aσ ≡
hψ4;ψ5jAjψ1;ψ2;ψ3i is the probability amplitude of
having an output jψ4i; jψ5i provided the input is jψ1i;
jψ2i; jψ3i. A spin-foam amplitude in LQG is built by
connecting N quantum gates A, where each A associates to
a 4-simplex σ and N is the number of σ’s in the
triangulation [Fig. 1(c)].
If we set all j ¼ 1=2, then jψ1i;…; jψ5i are qubits.

Thus, A is a quantum gate from 3 qubits to 2 qubits
and can be simulated by a quantum linear-optical experi-
ment. The design of the simulation is given in the next
section.
The simulation can be applied to higher spins (j > 1=2)

as well, with dimðHtetÞ > 2. Let us first consider an
example of A whose quantum tetrahedra have all j ¼ 1,
so that all 5 dimðHtetÞ are 3D. We choose a basis jeA¼1;2;3i
in each Htet and make the orthogonal decomposition

Htet ¼ Hþ ⊕ H−; Hþ ≡Hð2DÞ
tet ; ð2Þ

where Hþ is spanned by je1i and je2i, and H− is spanned
by je3i. We can restrict inputs and outputs of A into
subspaces H� and obtain submatrices. For instance,
restricting all inputs and outputs of A to 5 Hþ
gives Aþþþþþ, whose matrix elements are Aþþþþþ

AB;CDE ¼
heA; eBjAjeC; eD; eEi, where A, B, C, D, E ¼ 1, 2.
Aþþþþþ is a gate from 3 qubits to 2 qubits and is
accordingly a 4 × 8 matrix. Restricting some inputs and/
or outputs to H− gives, e.g., Aþ−þ−þ, whose matrix
elements are Aþ−þ−þ

A;CE ¼ heA; e3jAjeC; e3; eEi, where A,
C, E ¼ 1, 2. Aþ−þ−þ is a gate from 2 qubits to 1 qubit
and is accordingly a 2 × 4 matrix. All 32 Aa1;…;a5 (ai ¼ �)
are linear transformations of qubits (A−−−−− a trivial
transformation) and cover all information of A. Our strategy
of linear-optical simulation is to design a quantum circuit
on chip for each Aa1;…;a5 . We need 32 quantum circuits
(fewer than 32 in practice since A−−−−− is trivial and
Aþ−−−− is just a qubit) to simulate the complete A with
j ¼ 1. The most nontrivial design for Aþþþþþ is discussed
in detail in the next section, while all other circuits
for A����� are much simpler and can be designed
similarly.
Our strategy can be easily generalized to Awith arbitrary

j: Htet of arbitrary dimension d can be decomposed into
mutually orthogonal subspaces HðaÞ with dimðHðaÞÞ ≤ 2:

Htet ¼ ⨁
M

a¼1

HðaÞ; M ¼
(

d
2
; d even

dþ1
2
; d odd

: ð3Þ

Restricting inputs and outputs of A in different HðaÞ gives
M5 quantum gates Aa1;…;a5 (ai ¼ 1;…;M) of qubits. Each
Aa1;…;a5 can be cast into a linear-optical quantum circuit as
discussed in the next section.
When we prepare the input state for A, we require the

state to satisfy the area-matching condition [30], i.e., for ψm
and ψn corresponding to 2 tetrahedra sharing a face, their
spin j associated to the triangle has to be identical. This
condition should also be imposed on the input state in
general when we connect N quantum gates A to simulate
spin foams with N 4-simplices.
In the following, we will discuss the implementation of

the gate on a photonic chip. We note that such chips usually
have room for active control, which may enable making all
different configurations in one physical chip without the
need to fabricate a chip per gate.
Linear-optical simulator.—The gate A from 3 qubits to 2

qubits can be represented by a 22 × 23 matrix and is clearly
nonunitary. However, it is possible to extend A to a 12 × 12
unitary matrix U that includes A as a submatrix [5]. We use
the singular-value decomposition A ¼ LSR, where
Lð4 × 4Þ, Rð8 × 8Þ are unitary and S is a 4 × 8 matrix,
with the singular values, s1;…; s4, on the diagonal and
zeros elsewhere.
Now we can reconstruct the following unitary matrix:

U ¼
�

A L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I − SST

p
L

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I − STS

p
R −RSTL

�
; ð4Þ

where I is the identity matrix (with the proper size). One
can check that this 12 × 12 matrix is unitary and that A is a
submatrix of it. The condition for the unitarity of the matrix
is that all of the singular values are strictly less than one
[37]. This is indeed the case for spin-foam amplitudes. We
obtain A numerically for a Lorentzian Engle-Pereira-
Rovelli-Livine spin-foam amplitude [38,39] and check it
satisfies the condition (shown in the Supplemental Material
[40]). Generally speaking, all closed-system physical
processes conserve probability. Thus, a complete physical
process is unitary, and while a partial physical process can
be nonunitary, the singular values of such systems are
limited by the complete process and cannot be larger than
one [37]. We note that any unitary transformation can be
implemented with linear optics, as explicitly shown in the
Supplemental Material [40].
This unitary can be implemented with any 4-qubit system,

where the 12 × 12 unitary above would be a submatrix of a
16 × 16 unitary acting on the 4-qubit Hilbert space. We note
that, in the general case of spins (j > 1=2), one can use 4
qudits with the same dimensionality as the spins. The
decomposition of the unitary in this case, to 2-qudit unitary

PHYSICAL REVIEW LETTERS 126, 020501 (2021)

020501-3



operations, can be done in a similar fashion as the qubit case
but is beyond the scope of this work.
We now show how a simpler decomposition can be done.

Instead of using 4 qubits, one can use a single photon and
12 spatial modes. Not only is it much easier to conduct
experiments with a single photon, but it is also easier to
perform the 2-mode operations between spatial-mode pairs.
Let us rewrite the 3 input qubits as

jΨiin ¼ jψi1 ⊗ jψi2 ⊗ jψi3
¼ ðα10j0i þ α11j1iÞ ⊗ ðα20j0i þ α21j1iÞ

⊗ ðα20j0i þ α21j1iÞ

¼
Y3
j¼1

X1
k¼0

αjkjkij; ð5Þ

where jkij is the k state of the j qubit with amplitude of αjk.
Rewriting the indices, the initial state is

jΨiin ¼
X7
n¼0

αnjni; ð6Þ

where αn ¼ α1iα2jα3k and ðijkÞ is the binary representation
of n. Thus, Ψ may be reinterpreted as a qudit of dimen-
sion d ¼ 8.
tation of this state is a single photon in a superposition of

eight different spatial modes, i.e., eight different wave-
guides (Fig. 2). By taking such a system, the number of
physical particles is reduced to one! The total unitary
matrix can be implemented in a 12-waveguide chip
where the number of integrated Mach-Zehnder interfero-
meters (MZIs) is bounded by NðN − 1Þ=2 ¼ 66 (Fig. 3),
which is within the capability of current optical experi-
ments [6].
The elements of A can be measured by changing the input

state and monitoring the output. In general, the output state is

jΨ̄iout ¼ ÛjΨ̄iin; ð7Þ

where the ·̄ denotes the complete 12-mode states in contrast
to the 8- or 4-mode reduced states. Taking the initial state to
be the jth basis vector of the trivial basis, which physically
means to input one photon in the jth port, will result the
output state amplitudes to be the jth column of U:

U

0
BBBBBBBBBBB@

0

..

.

0

1

..

.

0

1
CCCCCCCCCCCA

jth ¼

0
BBBBBBBBBBB@

U1j

U2j

..

.

UNj

1
CCCCCCCCCCCA
: ð8Þ

FIG. 2. The 12 × 12 unitary transformation. The input state is 1
for one mode, 1;…; 8 and 0 for all other 11 modes. The output
state is the evolved state in modes, 1;…; 4 and conditioned
vacuum is measured in modes, 5;…; 12.

FIG. 3. Linear-optical circuit representation ofU [Eq. (S5)] forN ¼ 12 spatial modes. For consistency with notation, the top-left input
corresponds to the Nth (12th) mode. The one below that is the (N − 1)th mode, and so on. The location of the corresponding output
modes is found by following the transmission path of the input. For example, the bottom-right output is the Nth mode. The one above
that is the (N − 1)th mode, and so on. The yellow boxes before the MZIs represent the phases ϕ, the blue boxes within the MZIs
represent the phases ω, and the red boxes on the far right represent elements of the diagonal phase compensation matrix D (see the
Supplemental Material for more details [40]).
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Measuring the detection probability of the photon at the ith
output port then gives the elements of U:

Pij ¼ jhijÛjjij2 ¼ jUijj2: ð9Þ

Recalling Eq. (4), A is a submatrix of U; thus, Eq. (9) holds
also for A. The phase of A can be found by preparing the
initial state in an equal superposition of twomodes, say j and
j0. Then, the detection probability of the photon in the ith
mode is jUij þ Uij0 j2=2. Taking this and Eq. (9), the phase
between Uij and Uij0 can be extracted.
The protocol for implementing A includes postselection

of vacuum in modes 5;…; 12 (see, e.g., Fig. 2 and Ref. [5]).
Here we see another advantage of using just one physical
particle: if it is measured in one mode it cannot be measured
in any other modes. Therefore, the postselection is auto-
matically satisfied by just measuring the detection proba-
bility of the four first modes and ignoring any photon in the
other modes.
Unlike other implementations to LQG, ours also includes

path entanglement, which is generated by the beam splitters
and postselection [5]. We quantify the entanglement with the
Von Neumann entropy −

P
n s̃n log2 s̃n, where s̃n is the is the

nth singular value of the density matrix after postselection and
partial trace. Since there are four spatial modes, there are 14
different ways to perform the partial trace, and we maximized
the entropy over all options. The amount of entanglement
depends on the gate A and the input state. Taking an example
gate (see the Supplemental Material [40]) and varying in the
input state, the entanglement ranges between .014 and .986,
with 1 being maximal for the 4D Hilbert space (see
Supplemental Material for more details [40]).
The above discussion is for encoding the spin-foam

vertex amplitude in one chip of optical gates. The gener-
alization to spin-foam amplitudes with N vertex amplitudes
is made by building N similar optical chips and connecting
them optically. Performing measurement on this enlarged
system will produce spin-foam amplitudes with N vertices.
Implementing the gate on chip with 12 spatial modes
reduces the required number of photons from four, without
spatial multiplexing, to one with it. Thus, the number of
photons is bound by the number of vertices and thus
simulating a few-vertex spin-foam amplitude is experimen-
tally practical.
Given a spin-foam amplitude with N vertices and spins

fjfg, its complexity can be estimated. We denote by C the
complexity of a single U. C is the number of 2-mode gates
in U [42] and is bounded by 66 (see the Supplemental
Material [40]). N spin-foam vertices give the complexity
CN . Moreover, there are multiple choices of HðaÞ for
j > 1=2 at each tetrahedron Δ as described in Eq. (3).
If the number of choices at each Δ is denoted by MΔ, the
total complexity of a spin-foam amplitude is bounded by
CN

Q
Δ MΔ, where

Q
Δ represents taking the product over

all tetrahedra Δ in the 4D triangulation. If we take

into account summing over internal spins in the
spin-foam amplitude, the complexity is bounded by
CN

Q
Δ MΔ

Q
f Jf, where

Q
f represents taking the product

over all internal triangles f and Jf is the number of spins
summed at f. In principle, the sum over all triangulations
should be calculated, but summing over triangulations is
beyond the scope of the present Letter.
Summary.—In summary, we have developed a scalable

linear-optical implementation for efficiently simulating
LQG spin-foam vertex amplitudes—a problem that is
strongly believed to be in the computational complexity
bounded-error quantum polynomial time class. This means
that no efficient classical simulation exists. The implemen-
tation of the quantum gate that simulates the vertex
amplitude requires only a single photon and a 12-spatial-
mode circuit. The extension to N-vertex spin-foam ampli-
tudes can then be made by “stitching” many of these
primitive vertex-amplitude gates together (Fig. 1). Thus,
simulating N-vertex spin-foam amplitudes in LQG is now
within experimental reach.
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