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We study the dissipative preparation of many-body entangled Gaussian states in bosonic lattice models
which could be relevant for quantum technology applications. We assume minimal resources, represented
by systems described by particle-conserving quadratic Hamiltonians, with a single localized squeezed
reservoir. We show that in this way it is possible to prepare, in the steady state, the wide class of pure states
which can be generated by applying a generic passive Gaussian transformation on a set of equally squeezed
modes. This includes nontrivial multipartite entangled states such as cluster states suitable for
measurement-based quantum computation.
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The harnessing of quantum many-body dynamics by
engineered dissipation is interesting for applications in
quantum technology [1–3]. In these approaches, the envi-
ronment of many interacting quantum systems is designed
in such a way that the interplay between controlled
dissipation and interactions results in specific controlled
system dynamics [3–6], in the simulation of complex
quantum system [7–9], and in the robust preparation of
nontrivial quantum global stationary states [1,2,10–13],
including Gaussian states [14]. In general, the practical
realization of these dynamics is hampered by the need to
engineer the environment of all the many elements which
constitute the system. However, it has been also shown that
under certain conditions it is possible to engineer a single
localized reservoir to have control over the global proper-
ties of the system [15–17].
In this work we are interested in strategies which make

use of minimal resources, namely, only one squeezed
reservoir and a bosonic lattice with a passive (particle-
conserving) quadratic Hamiltonian [17–25]. It has been
shown that these systems can be steered into peculiar
entangled steady states, when the squeezed reservoir is
coupled to single site of the lattice and the Hamiltonian is
endowed with specific symmetries [18,21]. Here we
characterize the class of Gaussian pure states that can be
achieved with this approach, and we show that it is
composed of all the states that can be generated by applying
any combination of particle-conserving quadratic opera-
tions (beam splitters and phase shifts) on a set of equally
squeezed modes. We also identify the general properties of
the Hamiltonians which enable the generation of these pure
stationary states (showing, in particular, that they neces-
sarily satisfy the chiral symmetry identified in Ref. [21]),
and, for each state, we discuss how to construct the specific

Hamiltonian which sustains such state in the stationary
regime. Interestingly, the class of states that can be obtained
in this way includes Gaussian cluster states usable for
universal measurement-based quantum computation with
continuous variables [26,27], and, as a prominent example,
we study the performance of the present approach for
the preparation of a cluster state in a square lattice. In
measurement-based quantum computation a big part of the
complexity of the computation is placed into the prepara-
tion of the cluster state. In particular, optical setups are very
promising and scalable platforms for this task [28–42]. Our
proposal suggests that similar results could be achieved
also with localized quantum modes in, for example, circuit
QED systems [43–45].
In detail, we study the dissipative preparation of a zero-

average pure Gaussian state of N bosonic modes jΨi,
considering N þ 1 bosonic modes (including an additional
auxiliary mode). They are described by the annihilation
operators bj for j ∈ f0; 1 � � �Ng, and we assume that only
the auxiliary mode, that is the one with index j ¼ 0, is
coupled to a squeezed reservoir. In the ideal situation the
auxiliary mode is the only open mode which is subject to
dissipation in the squeezed reservoir. Additional dissipation
acting on the other modes reduces the purity of the
final state and will be addressed later on. We assume
quadratic Hamiltonians H for the N þ 1 modes, with only
passive interaction terms, H ¼ ℏ

P
N
j;k¼0 J j;kb

†
jbk (with

J j;k ¼ J �
k;j), which conserves the number of excitations,

so that the existing quantum correlations in the steady state
are a consequence of the correlations in the reservoirs only.
The system is described by the master equation

_ρ ¼ −
i
ℏ
½H; ρ� þ Lρ; ð1Þ
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where the effect of the squeezed bath is given
by the Lindblad term Lρ ¼ κfðn̄þ 1ÞDb0;b

†
0
þ n̄Db†

0
;b0

−
m̄�Db0;b0 − m̄Db†

0
;b†

0
gρ with Dx;yρ ¼ 2xρy − yxρ − ρyx,

and jm̄j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄ðn̄þ 1Þp

(this condition corresponds to a
reservoir in a pure squeezed state; if jm̄j < ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n̄ðn̄þ 1Þp
the

reservoir is not pure, and the states that we discuss here
are modified, in a straightforward way, by a thermal
component [18]). The central result of this work is the
following theorem.
Theorem.— A zero-average pure Gaussian state that is

factorized between the auxiliary mode (jψ0i) and the
remaining N modes (jΨi),

jΨtoti ¼ jψ0ijΨi; ð2Þ

and is generated from the vacuum j0i by the unitary
transformations U0 and U, such that jψ0i ¼ U0j0i and
jΨi ¼ Uj0i, is the unique steady state of Eq. (1) if and only
if the following three propositions are true: (I) U0 is
the squeezing transformation U0 ¼ eðz0=2Þðeiφ0b

†
0
2−e−iφ0b02Þ,

where the squeezing strength z0 and the squeezing phase
φ0 are determined by the squeezing of the reservoir
according to the relations tanhðz0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄=ðn̄þ 1Þp

, and
eiφ0 ¼ m̄=jm̄j; (II) U can be decomposed as U ¼ UðpÞUðSÞ,
where UðSÞ is the product of N single-mode squeezing
transformations with squeezing strength equal to that
of the transformation U0, i.e., UðSÞ ¼ U1 � � �UN , with

Uj ¼ eðz0=2Þðe
iφj b†j

2−e−iφj bj2Þ, and UðpÞ is a passive quadratic
transformation (note that both UðSÞ and UðpÞ do not operate
on the auxiliary mode); (III) the passive quadratic
Hamiltonian H for the N þ 1 modes of Eq. (1) is given
byH ¼ UðpÞHðSÞUðpÞ†, whereHðSÞ is any passive quadratic
Hamiltonian for which the following propositions are true:
(a)HðSÞ remains passive under the effect of the set of single-
mode squeezing transformations for the N þ 1 modes
U0UðSÞ, i.e., UðSÞ†U†

0H
ðSÞU0UðSÞ is passive; (b) all the

normal modes of HðSÞ have a finite overlap with the
auxiliary mode (see Ref. [46]).
Proof.—Part 1: If the propositions I–III are true then

Eq. (2) is the only steady state.—In the representation
defined by the transformation U0U, the transformed
density matrix ρ̃ ¼ U†U†

0ρU0U, fulfills the master equation
_̃ρ ¼ −ði=ℏÞ½H̃; ρ̃� þ L̃ ρ̃ where the dissipative term, L̃ ρ̃ ¼
κDb0;b

†
0
ρ̃, describes pure dissipation in a vacuum reservoir,

and the transformed Hamiltonian H̃ ¼ U†U†
0HU0U, can be

written as H̃ ¼ UðSÞ†U†
0H

ðSÞU0UðSÞ. This shows that H̃ is
passive because of proposition III(a). The proposition III
(b), instead, entails that HðSÞ, and therefore also H and H̃,
have no dark modes [46], i.e., all the normal modes are
coupled to the reservoir. Thus, the only steady state in the
new representation is the vacuum, which is equal to Eq. (2)
in the original representation.

Part 2: If Eq. (2) is the only steady state, then the
propositions I–III are true.— In the representation
defined by the density matrix ρ̃, the transformed steady
state, jΨ̃toti ¼ U†U†

0jΨtoti ¼ j0i, is the vacuum. This can
be true only if the transformed Hamiltonian H̃ is
passive with no dark modes, and the dissipative term
L̃ ρ̃ ¼ U†

0½LðU0ρ̃U
†
0Þ�U0 describes pure dissipation in a

vacuum reservoir. For this to be true U0 has to fulfill the
proposition I.
Now, in order to demonstrate the validity of the other

propositions, we note that it is always possible to decom-
pose a unitary transformation U, which generates a zero-
average pure Gaussian state, in a form similar to the one
defined in the proposition II, where UðSÞ is a set of single-
mode squeezing transformations which can be, in general,
of different strength, and UðpÞ is a multimode passive
transformation. This can be seen by using the
Bloch-Messiah decomposition [46]. Thus, Eq. (2) can be
always written in the form jΨtoti ¼ U0UðpÞUðSÞj0i. In
the representation defined by the transformed density
matrix ρðSÞ ¼ UðpÞ†ρUðpÞ, which fulfill the equation
_ρðSÞ ¼ −ði=ℏÞ½HðSÞ; ρðSÞ� þ LρðSÞ, the Hamiltonian HðSÞ ¼
UðpÞ†HUðpÞ is passive (because UðpÞ and H are passive),
and remains passive under the effect of U0UðSÞ (in fact
UðSÞ†U†

0H
ðSÞU0UðSÞ ¼ H̃ which, as we have seen, has to be

passive), and therefore the proposition III(a) is true.
Moreover, H̃ has no dark modes (because we are assuming
that the system has a single steady state), and thus the
proposition III(b) is true as well [46]. Finally, this also
means that all the modes are connected (even if not directly)
by the interactions terms of HðSÞ, and this together with the
following lemma guarantees that the strength of all the
squeezing transformations which constitute UðSÞ are equal.
In particular they have to be equal to the squeezing strength
of the auxiliary mode z0, which is fixed by the squeezing
strengths of the reservoir, so also the proposition II is true.▪
Let us now introduce the following lemma that describes

the precise structure of the Hamiltonian HðSÞ.
Lemma.—Given a passive quadratic Hamiltonian,

HðSÞ¼ℏ
P

N
j;k¼0J

ðSÞ
j;k b

†
jbk, with J

ðSÞ
j;k¼jJ ðSÞ

j;k jeiΘj;k and Θj;k¼
−Θk;j, the transformed Hamiltonian H̃ ¼ U†

N � � �U0

†HðSÞU0 � � �UN , with Uj ¼ eðzj=2Þðe
iφj b†j

2−e−iφj bj2Þ, is pas-

sive, if and only if (i) J ðSÞ
j;j ¼ 0 for all j with zj ≠ 0,

(ii) Θj;k ¼ nπ þ ðφj − φk þ πÞ=2 for j < k (with n ∈ Z),

and zj ¼ zk for all j ≠ k with J ðSÞ
j;k ≠ 0. Moreover, if H̃ is

passive then H̃ ¼ HðSÞ. (The proof of this lemma is
straightforward and is reported in the Supplemental
Material [46]).
It is now important to point out that, for any given

state jΨi which fulfills proposition II, each quadratic
Hamiltonian HðSÞ that fulfills the propositions III(a)–
III(b) (and the lemma) can be used to construct a (different)
Hamiltonian H (see the proposition III) of model (1) which

PHYSICAL REVIEW LETTERS 126, 020402 (2021)

020402-2



sustain the given state in the stationary regime. Thus the
same steady state can be obtained with many different
Hamiltonians. The specific form of H can determine how
fast (and therefore how efficiently, when additional noise
sources affect the system dynamics) the system approaches
the steady state. We also note that both HðSÞ and H satisfy
the chiral symmetry identified in Ref. [21] (see Ref. [46]).
This implies that the chiral symmetry of H is also a
necessary condition (not only a sufficient one, as suggested
in Ref. [21]) for the existence of the pure steady state (2)
of Eq. (1).
A particularly simple Hamiltonian HðSÞ that fulfills

the propositions III(a)–III(b) (and the lemma) is the
Hamiltonian for a linear chain with open boundary con-
ditions (for which the normal modes have always a finite
overlap with the end modes)

HðSÞ ¼ iℏ
XN

j¼1

JðSÞj ðeiθjbj−1b†j − e−iθjb†j−1bjÞ; ð3Þ

where θj ¼ ðφj − φj−1Þ=2, with φj the squeezing phases
introduced in the proposition II. This means that Eq. (3) can
be used to construct the Hamiltonian H corresponding to
any state that fulfills the proposition II. Specific examples
of multimode entangled states that can be prepared with
this strategy have been discussed in Refs. [18–23].
It is interesting to note that the class of states that can be

prepared with our approach is wide and it includes also
cluster states which are the main resource of measurement-
based quantum computation [26,27]. In particular all the
cluster states that have been proposed and prepared by
manipulating one or two squeezed light beams with a
complex interferometer [28–42] can be also generated
following our approach. The difference between these
results and the present approach is that, while in these
works the state is prepared in traveling wave beams of light,
our results shows how to generate similar states, in a robust
way, as stationary states of a dissipative dynamics. This
approach is, hence, attractive in situations in which the
quantum modes are localized, as, for example, in a solid-
state or atomic device [54,55].
Dissipative generation of a cluster state.—Let us now

investigate the potentiality of our result to design a model
which sustains in the stationary regime a cluster state in a
square lattice [46] which constitutes a universal resource
for measurement-based quantum computation [27,38].
To be specific, we consider a cluster state of N ¼ 25
modes with a N × N real symmetric adjacency matrix A
(with nonzero entries equal to one) which represents
the square lattice [46]. This state can be generated
by the multimode squeezing transformation [56]

Uz ¼ e−iðz=2Þ
P

N
j;k¼1

ðZj;kb
†
j b

†
kþZ�

j;kbjbkÞ, where the N × N
matrix of interaction coefficients is given by
Z ¼ −iðA − i1ÞðAþ i1Þ−1. What characterizes this as

cluster state is the fact that the covariance matrix of the
N operators xj ¼ pj −

P
N
k¼1 Aj;kqk [with qj ¼ bj þ b†j

and pj ¼ −iðbj − b†jÞ], called nullifiers, approaches the
null matrix in the limit of infinite squeezing, z → ∞ [56].
The transformation Uz can be decomposed, similarly to
the definition in the proposition II of the theorem, as

Uz ¼ UðpÞ
z UðSÞ

z , with UðSÞ
z given by the product of N equal

single-mode squeezing transformations (where φj ¼ 0

for all j), and with UðpÞ
z which fulfills the relation

UðpÞ
z

†bjU
ðpÞ
z ¼ P

N
k¼1 fð−iZÞ1=2gj;kbk [46]. The fact that

UðSÞ
z describes the equal squeezing of all the modes implies,

according to our theorem, that Uzj0i is the steady state of
Eq. (1) when

H ¼ UðpÞ
z HðSÞUðpÞ

z
†; ð4Þ

whereHðSÞ is the Hamiltonian for the linear chain (3). Note
that the same cluster state, given by a specific adjacency
matrix, can be generated by many different transformations

Uz, which correspond to differentU
ðpÞ
z [46,56,57], and thus

to different H. The specific form of H can be relevant and
should be taken into account when considering an experi-
mental implementation of these results.
In Figs. 1 and 2 we show the results for the preparation

of this cluster state. We have studied how the present
approach performs in nonideal situations that include
additional noise sources, with dissipation rate γ, and
random deviations from the optimal system Hamiltonian
defined in Eq. (4). In particular, in Figs. 1 and 2, we
characterize the steady state ρ0st of

_ρ0 ¼ −
i
ℏ
½H; ρ0� þ Lρ0 þ γ

XN

j¼0

Dbj;b
†
j
ρ0; ð5Þ

in terms of its fidelity with respect to the steady state ρst
achievable with γ ¼ 0 [black solid line, panel (a)], and in
terms of the variance of the nullifiers over ρ0st, relative to the
variance over the vacuum [dark gray lines, panels (b)]. We
observe that significant reduction of the variance (squeez-
ing) of the nullifiers (which indicates that the state is close
to the cluster state) is observed when γðN þ 1Þ ≪ κ,
namely, when the total added dissipation is much weaker
than the dissipation in the squeezed reservoir. The thin lines
in panel (a) describe how the model is sensitive to deviation
form the ideal Hamiltonian (4). We have considered both
deviation in the amplitude (thin solid gray lines) and in the
phase (thin dashed red lines) of the interaction coefficients,
and we observe that the system is significantly more stable
with respect to the latter. In any case, even when the fidelity
is very low, the nullifiers always exhibit significant squeez-
ing [panel (c)].
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We note that the overlaps between normal modes and
auxiliary mode [see panel (e)] determine the rates at which
each normal mode is coupled to the squeezed reservoir. In
the ideal case, these overlaps determine how fast each
normal mode approaches the steady state. The optimal
situation is the one in which all the overlaps are equal and
are as large as possible so that all the normal modes are
optimally coupled to the reservoir. This is described by
Fig. 2, which shows that in this case the system is
significantly more resistant to deviations from the ideal
configuration. We also note that the overlaps are the same
for both HðSÞ and H (because UðpÞ does not operate on the
auxiliary mode [46]). And this means that, for any state,
the time to reach the steady state is entirely determined
by the dynamics of the linear chain [Eq. (3)].

In conclusion, we have shown that, by squeezing the
local environment of a single site of an harmonic lattice, it
is possible to steer the whole system toward any pure
Gaussian state that can be generated by a passive multi-
mode transformation which operates on a batch of many
equally squeezed modes. In particular, given one of these
states, we have shown how to determine a passive quadratic
Hamiltonian which sustain it in the stationary regime (and
which necessarily fulfills the chiral symmetry identified in
Ref. [21]). This Hamiltonian is not unique [46], and we
have shown, by studying the generation of a cluster state in
a square lattice, that the efficiency for the preparation of the
chosen state, in nonideal situations, depends critically on
the specific ideal Hamiltonian that one considers.
Understanding which Hamiltonian is more suitable to its

(a)
(b) (c)

(d)

(e)

FIG. 2. As in Fig. 1 with the values of the interaction coefficients JðSÞj of HðSÞ (3) reported in panel (d) (note that the average value of
these coefficients is equal to the value of JðSÞj used in Fig. 1). These coefficients have been found by the numerical maximization of
the smallest overlap between the normal modes and the auxiliary mode, such that the resulting overlaps are all equal to
1=

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
[see panel (e)].

(a)
(b) (c)

(d)

(e)

FIG. 1. Dissipative preparation of a cluster state ofN ¼ 25modes in a 5 × 5 square lattice [46]. (a) Fidelity Trfρ0stρstg [53] between the
steady state ρ0st of the model (5) and the corresponding steady state ρst of Eq. (1). The thick black line is evaluated using the Hamiltonian
(4) (with JðSÞj ¼ 7.7κ [see panel (d)] and θj ¼ 0, ∀ j); the thin solid gray lines are evaluated for 20 random realizations of the system
Hamiltonian with interaction coefficients J ðζÞ

j;k ¼ J j;kð1þ ζj;kÞ where J jk are the coefficients of H [46], and ζj;k are random variables
uniformly distributed in the range ½−0.001; 0.001�; The thin dashed red lines are evaluated for 20 random realizations of the system
Hamiltonian with J ðβÞ

j;k ¼ J j;keiβj;k where βj;k ¼ −βk;j are random variables uniformly distributed in the range ½−0.015; 0.015�. (b),(c)
Corresponding steady state variance of the normalized nullifiers Xj ¼ rjxj (lower dark gray lines) and of the orthogonal collective
quadratures Yj ¼ rjyj with all the modes rotated by π=2, such that yj ¼ −qj −

P
N
k¼1 Aj;kpk (upper light gray lines), and where the

normalization coefficients rj are chosen such that Xj and Yj fulfill the standard commutation relation ½Xj; Yj� ¼ 2i. Panel
(b) corresponds to the thick black line of (a). Panel (c) corresponds to the realization (thin gray line) with the lowest fidelity of
panel (a). The horizontal dashed lines in (b) and (c) indicate the variance of the squeezed and antisqueezed quadratures of the squeezed
reservoir, which corresponds to n̄ ¼ 2. (d) Interaction coefficients JðSÞj of Eq. (3) used to compute the Hamiltonian (4). (e) Corresponding
overlap of the normal modes of HðSÞ and the auxiliary mode, i.e., scalar product jv0 · wjj between the normalized eigenvectors wj of the
coefficient matrix J ðSÞ of the Hamiltonian HðSÞ, and the vector, corresponding to the auxiliary mode, v0 ¼ ð1; 0 � � � ; 0Þ. The horizontal
gray line in (e) indicates the value 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
.
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practical realization, and which Hamiltonian corresponds to
a model that is more resistant to imperfections, are
questions that deserve further investigation. Another inter-
esting related question regards the possibility to extend this
approach to spin systems [17]. Moreover, these findings
also suggest how to extend the protocol discussed in
Refs. [17,24] to entangle generic distant arrays using a
two-mode squeezed field.
We finally note that this approach can be particularly

valuable for implementations of quantum information
devices with circuit QED systems, which have been
recently used to realize various lattice models [43–45].
An experimental implementation of our results would
require the ability to design the lattice Hamiltonian with
one of these systems, and to combine it with a squeezed
field of sufficiently large bandwidth [19,24], produced, for
example, with Josephson parametric amplifiers [58,59].
Alternatively, the squeezed reservoir could be also engi-
neered with bichromatic drives [18].
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Horizon 2020 Programme for Research and Innovation
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the Project No. 862644 (FET Open QUARTET).
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